• 제목/요약/키워드: Bax

검색결과 1,172건 처리시간 0.028초

Styrylpyrone Derivative Induces Apoptosis through the Up-Regulation of Bax in the Human Breast Cancer Cell Line MCF-7

  • Chien, Alvin Lee Teck;Pihie, Azimahtol Hawariah Lope
    • BMB Reports
    • /
    • 제36권3호
    • /
    • pp.269-274
    • /
    • 2003
  • In the fight against cancer, novel chemotherapeutic agents are constantly being sought to complement existing drugs. Various studies have presented evidence that the apoptosis that is induced by these anticancer agents is implicated in tumor regression, and Bcl-2 family genes play a part in apoptosis following treatment with various stimuli. Here, we present data that a styrylpyrone derivative (SPD) that is extracted from the plant Goniothalamus sp. showed cytotoxic effects on the human breast cancer cell line MCF-7. SPD significantly increased apoptosis in MCF-7 cells, as visualized by phase contrast microscopy and evaluated by the Tdt-mediated dUTP nick end-labeling assay and nuclear morphology. Western blotting and immunostaining revealed up-regulation of the proapoptotic Bax protein expression. SPD, however, did not affect the expression of the anti-apoptotic protein, Bcl-2. These results, therefore, suggest SPD as a potent cytotoxic agent on MCF-7 cells by inducing apoptosis through the modulation of Bax levels.

Ginsenoside Rh2 Induces Apoptosis via Activation of Caspase-1 and -3 and Up-Regulation of Bax in Human Neuroblastoma

  • Kim, Young-Soak;Jin, Sung-Ha
    • Archives of Pharmacal Research
    • /
    • 제27권8호
    • /
    • pp.834-839
    • /
    • 2004
  • In human neuroblastoma SK-N-BE(2) cells undergoing apoptotic death induced by ginsenos-ide Rh2, a dammarane glycoside that was isolated from Panax ginseng C. A. Meyer, caspase-1 and caspase-3 were activated. The expression of Bax was increased in the cells treated with ginsenoside Rh2, whereas Bcl-2 expression was not altered. Treatment with caspase-1 inhibi-tor, Ac-YVAD-CMK, or caspase-3 inhibitor, Z-DEVD-FMK, partially inhibited ginsenoside Rh2-induced cell death but almost suppressed the cleavage of the 116 kDa PARP into a 85 kDa fragment. When the levels of p53 were examined in this process, p53 accumulated rapidly in the cells treated early with ginsenoside Rh2. These results suggest that activation of caspase-1 and -3 and the up-regulation of Bax are required in order for apoptotic death of SK-N-BE(2) cells to be induced by ginsenoside Rh2, and p53 plays an important role in the pathways to promote apoptosis.

From Cytosol to Mitochondria: The Bax Translocation Story

  • Khaled, Annette R.;Durum, Scott. K.
    • BMB Reports
    • /
    • 제34권5호
    • /
    • pp.391-394
    • /
    • 2001
  • The balance between life and death of a cell regulates essential developmental processes in multicellular organisms. Apoptotic cell death is a complex, stepwise program involving multiple protein components that trigger and execute the demise of the cell. Of the many triggers of apoptosis, most are not well understood, but some key components have been identified, such as those of the Bcl-2 family, which function as anti-apoptotic or proapoptotic factors. Bax, a pro-apoptotic member of this family, has been shown to serve as a component of many apoptotic triggering cascades and its mechanism of action is the focus of intense study. Herein we discuss current, differing ideas on the function of Bax and its structure, and suggest novel mechanisms for how this death protein targets mitochondria, triggering apoptosis.

  • PDF

Effects of Soy-isoflavonoid on Molecular Markers Related to Apoptosis in Mature and Ovariectomized Female Rats, and Mammalian Tumor Cell Lines

  • Shin, Jang-In;Lee, Mee-Sook;Park, Ock-Jin
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.709-714
    • /
    • 2005
  • Alteration of molecular markers related to apoptosis of in vivo normal system and in vitro cancerous system by soy-isoflavonoid with estrogen was investigated. Down-regulation of Bcl-2 was accompanied by decreased expression of COX-2 (cyclooxygenase-2) in mature female rats treated with soy-isoflavonoid and estrogen. In ovariectomized rat system, Bax was regulated by higher concentration of soy treatment. Bax up-regulation by soy-isoflavonoid genistein treatment was observed in MCF-7 mammary cancer cell system. Estrogen without soy induced similar pattern of Bax expression as soy-isoflavonoid in vivo, but exhibited opposite trend in vitro. These findings suggest soy-isoflavonoid may have potential to induce apoptosis at higher concentrations through up-regulation of Bax or down-regulation of Bcl-2 expressions depending on normal or cancerous state, and physiological status of rats.

HL-60 세포에서 Camptothecin의 apoptosis 유도작용 (Induction of Apoptosis by Camptothecin in HL-60 Cells)

  • 김해종;천영진;김미영
    • 약학회지
    • /
    • 제43권3호
    • /
    • pp.385-390
    • /
    • 1999
  • Camptothecin (CPT) has been known to induce apoptosis in various cancer cell lines. To examine the intracellular apoptotic death signal initiated by CPT, we investigated the possible connection between caspase-3 activation and GSH depletion during CPT-induced apoptosis in HL-60 cells. Treatment of cells with $1{\;}{\mu}M$ CPT induced PARP cleavage accompanied by DNA fragmentation. z-VAD-fmk, a caspase-3 inhibitor, blocked the CPT-induced DNA fragmentation. Pretreatment of cells with N-acetylcysteine, a precursor of GSH biosynthesis, failed to inhibit CPT-induced PARP celavage and DNA gragmenatation. No significant changes in GSH depletion is not essential for caspase activation during CPT-induced apoptosis. We also investigated whether CPT-induced apoptosis is associated with changes of the levels of Bax and Bcl-2, two proteins involved in the control of apoptosis. Bcl-2 levels exhibited a late decrease compared with the kinetics of DNA fragmentation, whereas Bax levels increased more rapidly after CPT treatment. These results suggest that Bax plays more important role than Bcl-2 in inducing DNA fragmentation and may function upsteam of proteolytic activation of caspase-3 pathway in CPT-induced apoptosis.

  • PDF

Gerbil의 전뇌허혈에 대한 대황의 신경보호효과 (Neuroprotecticve Effect of Rhei Rhizoma on Transient Global Ischemia in Gerbil)

  • Bum-Hoi, Kim;Hyuk-Sang, Jung;Ran, Won;Ji-Ho, Park;Chul-Hun, Kang;Nak-Won, Sohn
    • 대한한의학회지
    • /
    • 제23권3호
    • /
    • pp.74-84
    • /
    • 2002
  • 목적 : 본 실험에서는 gerbil을 이용한 전뇌허혈 동물모델에서 뇌허혈손상 직후 지연성 뇌손상에 대한 대황의 방어효과와 Apoptosis 과정중의 Bax와 Bcl-2 단백질에 대한 조절작용을 관찰하고, TUNEL 염색법을 통하여 대황이 gerbil hippocampus CAl영역의 pyramidal neuron의 세포사에 미치는 영향과 PCl2세포를 이용한 세포배양 모델에서의 대황의 신경방어 효과를 관찰하였다. 방법 : Mongolian gerbil의 총경동맥을 5분간 폐색하여 가역성 전뇌허혈을 유발시킨 후 대황의 전탕액을 하루에 한번 경구 투여하였다. 대황의 신경 보호 효과는 수술 7일 후에 cresyl violet으로 염색하여, 살아있는 신경 세포의 수를 세어 측정하였다. 또, 수술 3일 후에는 면역조직화학적 방범을 통하여 Bax. Bcl-2단백질의 발현과 대황의 신경보호 효과와의 관련성을 알아보았다. 결과: 가역적 전뇌허혈이 일어난 동물군의 경우 hippocampus의 CAl 영역에서 살아있는 신경세포의 수는 $51.0{\pm}2.5개{\;}/mm$에 불과하였으나, 그에 비해 수술 후 7일간 대황을 투여한 동물군은 $106.2{\pm}2.5개{\;}/mm$로 살아 있는 신경세포수가 크게 증가하였다. Apoptosis를 촉진하는 단백질인 Bax의 발현은 3일간 대황을 투여한 동물군의 경우 hippocampus의 CAl 영역에서 현저하게 저해되었고, Apoptosis를 억제하는 Bcl-2 단백질의 발현은 변화가 없었다. TUNEL assay를 통하여 살펴본 결과 대황 투여군의 apoptotic 신경세포사가 감소하였으며 이는 Bax protein의 발현과 유사한 양상을 나타내었다. 결론:대황이 Bax 단백질의 발현을 억제하여 상대적으로 Bax/Bcl-2 자연적 세포사를 억제하여 Mogolian gerbil의 가역성 전뇌허혈 모델에서 신경보호효과를 나타내는 것으로 사료된다.

  • PDF

C6 신경교세포에서 lipopolysaccharide에 의한 p21 (WAF1/CIP1) 및 Bax의 발현증가에 미치는 resveratrol의 영향 (Inhibitory Effect of Resveratrol on Lipopolysaccharide-induced p21 (WAF1/CIP1) and Bax Expression in Astroglioma C6 Cells)

  • 김영애;임선영;이숙희;최영현
    • 동의생리병리학회지
    • /
    • 제19권1호
    • /
    • pp.124-129
    • /
    • 2005
  • Resveratrol, a phytoalexin found at high levels in grapes and in grape products such as red wine, has been reported to possess a wide range of biological and pharmacological activities including anti-oxident, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects, but its molecular mechanism is poorly understood. In this study, we examined the effects of resveratrol on lipopolysaccharide (LPS)-induced growth inhibitory activity and cell growth-regulatory gene products in astroglioma C6 cells to elucidate its possible mechanism for anti-cytotoxicity. It is shown that LPS induced time-dependent growth inhibition and morphological changes of C6 cells, which were recovered by pre-treatment with resveratrol. The anti-proliferative effect of LPS was associated with the induction of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAF1/CIP1) expression assessed by RT-PCR and Western blot analysis in time-dependent manner in C6 cells. In addition, the pro-apoptotic Bax expression was also up-regulated in LPS-treated C6 cells without alteration of anti-apoptotic Bcl-2 and Bcl-XL expression. However, resveratrol significantly inhibited LPS-induced p53, p21 and Bax levels, suggesting that the modulation of p53, p21 and Bax levels could be one of the possible pathways by which resveratrol functions as anti-cytotoxic agent.

Combined Treatment with Stattic and Docetaxel Alters the Bax/Bcl-2 Gene Expression Ratio in Human Prostate Cancer Cells

  • Mohammadian, Jamal;Sabzichi, Mehdi;Molavi, Ommoleila;Shanehbandi, Dariush;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권11호
    • /
    • pp.5031-5035
    • /
    • 2016
  • Docetaxel, recognized as a stabilizing microtubule agent, is frequently administrated as a first line treatment for prostate cancers. Due to high side effects of monotherapy, however, combinations with novel adjuvants have emerged as an alternative strategy in cancer therapy protocols. Here, we investigated the combined effects of stattic and docetaxel on the DU145 prostate cancer cell line. Cytotoxicity was evaluated by MTT assay. To understand molecular mechanisms of stattic action, apoptotic related genes including Bcl-2, Mcl-1, Survivin and Bax were evaluated by real-time RT-PCR. Alteration in the expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 genes and Bax/Bcl-2 ratio were investigated via the $2^{{\Delta}{\Delta}CT}$ method. The $IC_{50}$ values for docetaxel and stattic were $3.7{\pm}0.9nM$ and $4.6{\pm}0.8{\mu}M$, respectively. Evaluation of key gene expression levels revealed a noticeable decrease in antiapoptotic Bcl-2 and Mcl-1 along with an increase in pro-apoptotic Bax mRNA levels (p<0.05). Our results suggest that combination of a STAT3 inhibitor with doctaxel can be considered as a potent strategy for induction of apoptosis via increasing Bax mRNA expression.

Hepa1c1c7 세포에서 카드뮴에 의한 세포사멸 신호전달체계에 관한 연구 (Apoptotic Signaling Pathway by Cadmium in Hepalclc7 cells)

  • 오경재;염정호
    • Toxicological Research
    • /
    • 제17권3호
    • /
    • pp.215-223
    • /
    • 2001
  • 카드뮴의 주요한 표적장기이며 카드뮴이 만성 및 급성 폭로시 축적되는 가장 중요한 장기인 간의 세포독성을 Hepalclc7세포에서 caspases및 Bax단백질의 활성과 발현 그리고 미토콘드리아 세포막 전위 변화(MPT) 등을 조사하여 다음과 같은 결과를 얻었다. 1. 카드뮴은 농도의존적으로 간세포인 Hepalclc7 세포의 생존율을 감소시켰다. 2. 카드뮴을 농도별로 처리하였을 때 100 M 이상의 농도에서 세포사멸의 특징중의 하나인 DNA분절현상을 확인하였다. 3. 카드뮴 처리 후 caspase-3, caspase-8, caspase-9 의 활성변화를 조사한 결과 caspase-3,-9 pretease 활성이 시간이 경과함에 따라 증가하였다. 4. 카드뮴 처리 후 cytochrome c가 세포질내로 방출되었고 이는 caspase-9 proteas의 활성화를 유도하였다. 5. 카드뮴 처리 후 Bax가 세포질에서 미토콘드리아로 이동하여 cytochrome c의 세포질내로의 방출에 관여하였다. 6. 카드뮴 처리시 미토콘드리아 세포막 전위차의 감소를 JC-1 형광염색을 통하여 확인하였다. 이상의 결과는 카드뮴에 의한 Hepalclc7 세포사멸의 신호전달기전은 세포질내에 있는 Bax가 미토콘드리아로 이동, cytochrome c의 세포질내로의 방출, 그리고 caspase-3, 9 pretease 활성화를 의해서 매개되는 것으로 판단된다. 또한 Bax 단백질의 발현변화가 미토콘드리아의 기능변화에 기여하였으리라 사료된다.

  • PDF

NDP Kinases Suppressed Bax-Dependent Apoptosis in Yeast System

  • K. C. Hwang;D. W. Ok;D. N. Kwon;H. K. Shin;Kim, J. H.
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 춘계학술발표대회
    • /
    • pp.52-52
    • /
    • 2001
  • Many nucleoside diphosphate (NDP) kinases are ubiquitous enzymes responsible for the exchange of ${\gamma}$-phosphates between tri- and diphosphonucleosides. The catalytic Many nucleoside diphosphate (NDP) kinases are ubiquitous enzymes responsible for the exchange of ${\gamma}$-phosphates between tri- and diphosphonucleosides. The catalytic reaction follows a ping-pong mechanism in which the enzyme is transiently phosphorylated on a histidine residue conserved in all nucleoside diphosphate kinases. Beside their role in nucleotide synthesis, these enzymes present additional functions, possibly independent of catalysis, in processes such as differentiation, cell growth, tumor progression, metastasis and development. To clone murine nm23-M5, several expressed sequence tags (ESTs) of the GenBank data base, selected according to their homology to nm23-H5 cDNA, reconstituted a complete open reading frame (GenBank AF222750). To test whether murine NDPKs (1, 2, 3, 4, 5, and 6) can inhibit Bax-mediated toxicity in yeast, co-transformation was performed respectively. The yeast S.cerevisiae was transformed with a copy expression plasmid containing the histidine selection marker and expressing murine Bax under the control of a galactose-inducible promoter. Several clones were selected and found to be growth inhibited when Bax expression was induced with galactose. A representative clone was transformed again with a copy expression plasmid containing the tryptophane selection marker and expressing either murine Bcl-xL or NDPK under the control of a galactose-inducible promoter. Several subclones of the double-transformants were selected and characterized. The ability of Bcl-xL and NDPKs to suppress Bax-mediated toxicity was determined by growing yeast cells overnight in galactose media and spot-testing on galactose plates starting with an equal number of yeast cells as determined by taking the OD$_{600}$. Ten-fold serial dilutions were used in the spot-test. Plates were grown at 3$0^{\circ}C$ for 2-3 days. All murine NDPKs suppressed Bax dependent apoptosis. Futher study will be peformed whether Bax-toxicity inhibition was caused by NDP kinase activity or additional function.n.

  • PDF