• Title/Summary/Keyword: Battlefield environment

Search Result 119, Processing Time 0.026 seconds

Implementation and Performance Analysis of Partition-based Secure Real-Time Operating System (파티션 기반 보안 실시간 운영체제의 구현 및 성능 분석)

  • Kyungdeok Seo;Woojin Lee;Byeongmin Chae;Hoonkyu Kim;Sanghoon Lee
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.99-111
    • /
    • 2022
  • With current battlefield environment relying heavily on Network Centric Warfare(NCW), existing weaponary systems are evolving into a new concept that converges IT technology. Majority of the weaponary systems are implemented with numerous embedded softwares which makes such softwares a key factor influencing the performance of such systems. Furthermore, due to the advancements in both IoT technoogies and embedded softwares cyber threats are targeting various embedded systems as their scope of application expands in the real world. Weaponary systems have been developed in various forms from single systems to interlocking networks. hence, system level cyber security is more favorable compared to application level cyber security. In this paper, a secure real-time operating system has been designed, implemented and measured to protect embedded softwares used in weaponary systems from unknown cyber threats at the operating system level.

A Case Study on FPV Drone Combats of the Ukrainian Forces (우크라이나군의 FPV드론 전투 사례 연구)

  • Kang-Il Seo;Sang-Keun Cho;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.263-270
    • /
    • 2023
  • The Ukraine-Russia war is a testing ground for High-Tech weapons and the first full-scale drone warfare. The Ukrainian military has been aggressively deploying a variety of reconnaissance and attack drones on the battlefield, and more recently, FPV drones, also known as racing drones, have been fitted with bombs as a game-changer in small-unit combat. To better understand these FPV drones, this article reviews their definition, aircraft components, and key characteristics, and draws implications from the Ukrainian military's FPV combat experience. In the future, the combination of artificial intelligence and swarming technology will make FPV drones even more lethal. Accordingly, the need to develop FPV drones suitable for the future operational environment on the Korean Peninsula is increasing, and follow-up research is needed to specify fighting methods and optimize related technologies.

A Study on the Military Operation of Urban Air Mobility (UAM) (도심항공모빌리티(UAM)의 군사적 운용방안에 관한연구)

  • Kang-Il Seo;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.287-292
    • /
    • 2023
  • The U.S. National Aeronautics and Space Administration proposed a new concept of urban air mobility in the city's short-range air transport ecosystem in order to build a new low-altitude air, and the term uam is currently used worldwide. This paradigm is also being promoted by the Korean government with the goal of commercializing urban air transport services by 2025, and furthermore, the need to secure air maneuvers and transportation capacity is emerging due to the rapidly changing future operating environment and battlefield space. In other words, this study started to present the military necessity and military operation plan by introducing the 'Agility Prime' program of the US Air Force. 'Agility Prime' program was organized in order of background and concept of urban air mobility, development trend of Korean urban air mobility and analysis of the US Air Force's 'Agility Prime' program, and it is expected that this study will be followed by a follow-up study.

A Study on the Improvement of Naval Combat Management System for the Defense of Drone

  • Ki-Chang Kwon;Ki-Pyo Kim;Ki-Tae Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.93-104
    • /
    • 2023
  • Recently, the technology of drones is developing remarkably. The role of military drones is so great that they can cause serious damage to the enemy's important strategic assets without any damage to our allies in all battlefield environments (land, sea, air). However, the battleship combat management system currently operated by the Korean Navy is vulnerable to defense because there is no customized defense system against drones. As drones continue to develop, they are bound to pose a major threat to navy in the future. This paper proposes a way for the warfare software of naval combat management system sets a combat mode suitable for anti-drone battle, evaluates the threat priority in order to preemptively respond to drone threats and eliminate drone threats through automatic allocation of self-ship-mounted weapons and sensors, and through a test of the improved warfare software in a simulated environment, it was proved that the time to respond to the drone was improved by 62%.

Development of C2 Virtual Linked Simulator For Engineering and Engagement Level Battle Experimentation (공학-교전급 전투실험을 위한 C2 가상모의 연동 시뮬레이터 개발)

  • Lee, Sangtae;Lee, Seungyoung;Hwang, Kun-Chul;Kim, Saehwan;Lee, Kyuhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2013
  • The Korean naval weapon systems, combat experiments establish the concept of Battle operations, and create the future of the new weapons system. Doctrine development and training as well as ranging from experiments for evaluate the performance of mission operations for combat experiments are used. The battle lab is effectively support tool for the Korean Naval battle experiments. The battle lab is through a dedicated testing facility and to build efficient and effective simulation-based acquisition supporting environment. In this paper, the ship / submarines C2 operations virtual simulator was developed to support the concept of Battle operations of naval combat experiments in training and tactical development. The ship C2 operations virtual simulator makes the anti-ship and anti-aircraft the engagement scenario for performed experiments using the SADM. The submarines C2 operations virtual simulator makes the anti-submarine engagement scenario for performed experiments using EAS. EAS System was created before reuse. EAS system by modifying the additional interfaces HLA-RTI has been reused. Reflected in the tactics and training after analysis of the results through the battle experiment. Also increase training fidelity through operator involvement. The anti-ship and anti-aircraft system architecture (SADM) and anti-submarine system architecture (EAS) requires unique design of system framework since two separate architectures should be integrated into a system. An C2 virtual linked architecture was used to integrate different system architecture. A C2 virtual linked software framework, designed that have integrated protocol for battle experimental linkage and battlefield visualization environment.

Analyzing the Efficiency of Defense Basic Research Projects using DEA (자료포락분석(DEA)을 활용한 국방 기초연구개발 사업의 효율성 분석)

  • Lim, Yong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.517-524
    • /
    • 2020
  • In line with the recent wave of the 4th Industrial Revolution, the environment for defense R&D is transforming into a center of high-tech military technology. In particular, developed countries are strengthening control of technology exports and technology transfer to protect advanced defense science and technology. For this reason, the budget demand for securing the ability to develop independently high-tech weapons and core technologies suitable for the future battlefield environment is increasing, and increasing efficiency in R&D investment has been highlighted for efficient distribution of limited budgets. This study examined the efficiency of the defense basic R&D project using the non-parametric approach, DEA. The R&D budget, R&D researcher, and R&D period were selected as the input variables, and the number of papers and patents were used as output variables. The efficiency of basic R&D projects was analyzed through CCR, BCC models, and SE. Lastly, based on the efficiency measurements, the cause of the inefficiency of R&D projects was suggested, and ways to improve efficiency were suggested. This study is expected to be used as useful information that can be applied to project performance management through efficiency analysis of basic defense R&D projects and be reflected in the project planning stage through feedback.

A Study on the Methodology for Combat Experimental Testing of Future Infantry Units using Simulation (시뮬레이션을 활용한 미래 보병부대 전투실험)

  • Lim, Jong-Won;Choi, Bong-Wan;Yim, Dong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.429-438
    • /
    • 2021
  • Owing to the development of science technology, particularly the smart concept and defense policy factors of the 4th industry, military weapon systems are advanced, and the scientific and operational force is reduced dramatically. The aspect of the future war is characterized by the operation of troops with reduced forces from advanced and scientific weapon systems in an operational area that has expanded more than four times compared to the present. Reflecting on these situational factors, it is necessary to improve combat methods based on the changes in the battlefield environment and advanced weapon systems. In this study, to find a more efficient future combat method in a changing war pattern, this study applied the battle experiment methodology using Vision21 war game model, which is an analytical model used by the army. Finally, this study aimed to verify the future combat method and unit structure. Therefore, the scenario composition and experiment method that reflect the change in the ground operational environment and weapon system was first composed. Subsequently, an analysis method based on the combat effectiveness was applied to verify the effective combat performance method and unit structure of future infantry units.

An Algorithm for Submarine Passive Sonar Simulator (잠수함 수동소나 시뮬레이터 알고리즘)

  • Jung, Young-Cheol;Kim, Byoung-Uk;An, Sang-Kyum;Seong, Woo-Jae;Lee, Keun-Hwa;Hahn, Joo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.472-483
    • /
    • 2013
  • Actual maritime exercise for improving the capability of submarine sonar operator leads to a lot of cost and constraints. Sonar simulator maximizes the capability of sonar operator and training effect by solving these problems and simulating a realistic battlefield environment. In this study, a passive sonar simulator algorithm is suggested, where the simulator is divided into three modules: maneuvering module, noise source module, and sound propagation module. Maneuvering module is implemented in three-dimensional coordinate system and time interval is set as the rate of vessel changing course. Noise source module consists of target noise, ocean ambient noise, and self noise. Target noise is divided into modulated/unmodulated and narrowband/broadband signals as their frequency characteristics, and they are applied to ship radiated noise level depending on the vessel tonnage and velocity. Ocean ambient noise is simulated depending on the wind noise considering the waveguide effect and other ambient noise. Self noise is also simulated for flow noise and insertion loss of sonar-dome. The sound propagation module is based on ray propagation, where summation of amplitude, phase, and time delay for each eigen-ray is multiplied by target noise in the frequency domain. Finally, simulated results based on various scenarios are in good agreement with generated noise in the real ocean.

An Empirical Study on the Prediction of Future New Defense Technologies in Artificial Intelligence (인공지능 분야 국방 미래 신기술 예측에 관한 실증연구)

  • Ahn, Jin-Woo;Noh, Sang-Woo;Kim, Tae-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.458-465
    • /
    • 2020
  • Technological advances in artificial intelligence are affecting many industries, such as telecommunications, logistics, security, and healthcare, and research and development related to economic, efficiency, linkage with commercial technologies are the current focus. Predicting the changes in the future battlefield environment and ways of conducting war from a strategic point of view, as well as designing/planning the direction of military development for a leading response is not only a basic element to prepare for comprehensive future threats but also an indispensable factor that can produce an optimal effect over a limited budget/time. From this perspective, this study was conducted as part of a technology-driven plan to discover potential future technologies with high potential for use in the defense field and apply them to R&D. In this study, based on research data collected in a defense future technology investigation, the future new technology that requires further research was predicted by considering the redundancy with existing defense research projects and the feasibility of technology. In addition, an empirical study was conducted to verify the significance between the future new defense technology and the evaluation indicators in the AI field.

A Study for Autonomous Intelligence of Computer-Generated Forces (가상군(Computer-Generated Forces)의 자율지능화 방안 연구)

  • Han, Chang-Hee;Cho, Jun-Ho;Lee, Sung-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • Modeling and Simulation(M&S) technology gets an attention from various parts such as industry and military. Especially, military uses the technology to cope with a different situation from the one in the Cold War and maximize the effect of training against the cost in the new environment. In order for the training based on M&S technology to be effective, the situations of a battlefield and a combat must be more realistically simulated. For this, a technique development on Computer-Generated Forces(CGF) which represents a unit's simulation logic and a human's simulated behaviors is focused. The CGF simulating a human's behaviors can be used in representing an enemy force, experimenting behaviors in a future war, and developing a new combat idea. This paper describes a methodology to accomplish Computer-Generated Forces' autonomous intelligence. It explains the process of applying a task behavior list based on the METT+T element onto CGFs. On the other hand, in the domain knowledge of military field manual, fuzzy facts such as "fast" and "sufficient" whose real values should be decided by domain experts can be easily found. In order to efficiently implement military simulation logics involved with such subjectivity, using a fuzzy inference methodology can be effective. In this study, a fuzzy inference methodology is also applied.