• Title/Summary/Keyword: Battery-backup

Search Result 28, Processing Time 0.021 seconds

Lithium-ion Stationary Battery Capacity Sizing Formula for the Establishment of Industrial Design Standard

  • Chang, Choong-koo;Sulley, Mumuni
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2561-2567
    • /
    • 2018
  • The extension of DC battery backup time in the DC power supply system of nuclear power plants (NPPs) remains a challenge. The lead-acid battery is the most popular at present. And it is generally the most popular energy storage device. However, extension of backup time requires too much space. The lithium-ion battery has high energy density and advanced gravimetric and volumetric properties. The aim of this paper is development of the sizing formula of stationary lithium-ion batteries. The ongoing research activities and related industrial standards for stationary lithium-ion batteries are reviewed. Then, the lithium-ion battery sizing calculation formular is proposed for the establishment of industrial design standard which is essential for the design of stationary batteries of nuclear power plants. An example of calculating the lithium-ion battery capacity for a medium voltage UPS is presented.

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

Design Space Exploration of EEPROM-SRAM Hybrid Non-volatile Counter Considering Energy Consumption and Memory Endurance (에너지 소비 및 메모리 내구성을 고려한 EEPROM-SRAM 하이브리드 비휘발성 카운터의 설계 공간 탐색)

  • Shin, Donghwa
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.201-208
    • /
    • 2016
  • Non-volatile counter is a counter that maintains the value without external power supply. It has been used for the applications related to warranty issues to count and record certain events such as power cycles, operating time, hard resets, and timeouts. It has been conventionally implemented with volatile memory-based counter and battery backup or non-volatile memory such as EEPROM. Both of them have a lifetime issue due to the limited lifetime of the battery and the endurance of the non-volatile memory cells, which incurs significant redundancy in design. In this paper, we introduce a hybrid architecture of volatile (SRAM) and non-volatile memory (EEPROM) cells to achieve required lifetime of the non-volatile counter with smaller cost. We conduct a design space exploration of the proposed hybrid architecture with the parameters of various kinds of non-volatile memories. The analysis result shows that the proposed hybrid non-volatile counter can extend the lifetime up to 6 times compared to the battery-backup volatile memory-based implementation.

Development of the Real-Time Remote Battery Inspection System (실시간 원격 배터리 점검 시스템의 개발)

  • Lee, Jong-Hak;Kim, Hyung-Won;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2016
  • Uninterruptible power supplies are extensively used as backup power in various applications such as telecommunication systems, Internet data centers, hospitals, and military technologies. Some of these applications require a considerable number of batteries, and the maintenance of such batteries is critical for the reliability of a system. However, batteries are chemical energy storage devices that deteriorate over time and frequently inspecting their performance and suitability is difficult. A real-time remote battery inspection system that applies electrochemical impedance spectroscopy is proposed and implemented in this study. The proposed system consists of a small inspection circuit and software for control. The former is developed to monitor the impedance variation of the battery and to diagnose its state. The validity and feasibility of the proposed system is proven by experimental results.

Redundant Storage Device in Communication System (교환 시스템에서의 이중화 저장장치)

  • 노승환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4B
    • /
    • pp.403-410
    • /
    • 2004
  • In general communication system is composed of processor subsystems, I/O processor subsystems and data storage device subsystems those are classified as their functions. In order to improve the data reliability, all subsystems are redundant. Storage device keeps the operational information such as system related information and charging information, and such informations must be stored in non-volatile memory. Flash memory and battery backup memory are commonly used as the non-volatile storage devices. But such kind of memories are expensive per unit capacity and data can't be restored when lost while not being backed up. In this paper we develop a redundant storage device to store a lot of data safely and reliably in communication system. The device consists of micro-controller, FPGA and hard disk It provides many functions those are rebuilding, automatic remapping, host service and remote host service. Also it is designed to provide host service while rebuilding is being done in order not to interrupt the communication services. The developed device can be used instead of expensive storage device like flash memory in various communication systems.

Energy-Aware Routing Algorithm using Backup Route for Ad hoc Network (애드혹 네트워크에서의 보조 경로를 이용한 에너지 인식 라우팅 알고리즘)

  • Jung Se-Won;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.23-32
    • /
    • 2005
  • This paper proposes a new algorithm for the energy constraint ad-hoc network which efficiently spread the energy usage over the network through the backup route scheme in order to increase the network lifetime. Recently, the various energy-efficient routing algorithms based on On-demanding method are proposed. Among them, PSR(Power-aware Source Routing) increased the network lifetime through the periodical route alternation depended on the use of the battery while DSR(Dynamice Source Routing) uses only the route selected during the route discovery phase. But PSR has a problem that it increases the route overhead because of the frequent flooding for the route alternation. For solving this problem, we propose HPSR(Hierarchical Power-aware Source Routing) which uses the backup route set during the route discovery in order to alternation the route without the flooding. HPSR increases the network lifetime due to the frequent route alternation using backup route while it decreases the routing overhead due to the reduced flooding. In this paper, we also prove the performance of HPSR through the simulation using OPNET.

A study of small size battery charging characteristic by serial-parallel connected DSC module (단위 DSC셀의 직병렬 연결을 통한 소형 배터리 충전특성에 관한 연구)

  • Hong, Ji-Tae;Choi, Jin-Young;Seo, Hyun-Woong;Kim, Mi-Jeong;Sim, Ji-Young;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.192-194
    • /
    • 2006
  • To elucidate possible challenges for outdoor practical use of dye-sensitized solar cells(DSC), compared with conventional Si solar cells. DSC modules still need the larger area than conventional Si solar modules to attain the same rated output because of lower photoelectron-chemical conversion efficiency. However, using batteries backup systems, the measured data shows that DSCs gathered over 12% more electricity than Si solar cells of the same rated output power in same outdoor condition. Moreover, battery charging time of DSC is about 1 hour faster than same rate of Si solar module. In this paper, 12 single DSC cells prepared for 4 serialized DSC cells was connected in 3 row parallel which have same output power rate of Si solar module. This DSC module was practiced generating characteristic experiment over outdoor daylight condition and applied with PV battery charger by using DC-DC converter. The main advantages of DSC module battery charger as compared with conventional Si solar module one are shorter charge time and lower cost.

  • PDF

Battery Monitoring System for High Capacity Uninterruptible Power Supply (대용량 무정전 전원장치를 위한 배터리 모니터링 시스템)

  • Lee, Hyung-Kyu;Kim, Gi-Taek
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.580-585
    • /
    • 2019
  • Batteries are being used in ESS, electric vehicles and uninterruptible power backup systems. Lead-acid batteries are the most used batteries for high capacity power back up equipment due to their high reliability and low price advantages. It is very important to estimate the chargeable capacity(SoH), and many algorithms were proposed to estimate the internal resistance of the battery. In this paper, the Battery Monitoring System(BMS) for high capacity uninterruptible power supply for IDC is proposed. A simple algorithm for estimating internal resistance was proposed. An computational block diagram of the proposed signal processing algorithm and BMS system configuration of CPU and analog circuit were shown. The proposed method was proved useful by presenting data examples of application to actual IDC sites.

A Network Reconfiguration Method for BESS based Service Restoration in Distribution Systems (연계선로가 없는 배전선로에서 BESS기반 정전복구를 위한 토폴로지 재구성 방안)

  • Lim, Seongil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1460-1465
    • /
    • 2017
  • Outage areas can be transferred to adjacent feeders to restore power supply in case of the fault on the distribution system. Feeders in the small island or mountain area may not have backup feeders due to the low density of load. In this weakly meshed open loop system, BESS can be used as a backup feeder to improve reliability of power supply. This paper proposes a new network reconfiguration method for BESS based service restoration. Fuzzy decision making technique is adopted to deal with fuzziness of service restoration planning rules. Case studies using KEPCO real distribution system have been performed to verify feasibility of the proposed method.

Series-Parallel Compensated Uninterruptible Power Supply (직병렬 보상형 무정전 전원장치에 관한연구)

  • Jeon, Seong-Jeub;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.300-302
    • /
    • 1996
  • In this paper a new series-parallel compensated uninterruptible power supply is proposed. Its series compensator shapes input current to sinusoid. The power handled by series compensator is only a quarter of ratings. And parallel compensator delivers sinusoidal voltage to nonlinear load. The parallel compensator is backedup with battery. This system has capabilities of power line conditioner and backup power with reduced size.

  • PDF