• 제목/요약/키워드: Battery thermal management system

검색결과 38건 처리시간 0.026초

BMS 정밀도 향상을 위한 셀 밸런싱용 션트 고정저항의 허용오차 저감 방법 (A Method of Reducing a Tolerance of a Shunt Resistor for Balance of the Battery Cell to Improve a Precision of BMS)

  • 김은민;손미라;강창룡
    • 전기학회논문지
    • /
    • 제67권8호
    • /
    • pp.1055-1061
    • /
    • 2018
  • Recently, due to the rapid development of electric vehicle and energy storage system, it is emphasized for battery management system to be needed and to be improved. BMS carries out various movement for optimization the use of the energy and safe use of secondary battery, these movement of BMS start at high wattage shunt fixed resistor which performs a function for detecting current among the BMS components. In addition, for the safe operation of secondary battery, the reliability of current voltage variation detected from shunt should be secured, and for corresponding characteristics, the quality of Temperature coefficient of resistance for BMS shunt and the quality of Thermo electromotive force all must be excellent. For these reasons, this study comes up with the stabilization plan for thermo electromotive force and temperature coefficient of resistance of BMS shunt resistor which is key to secondary battery operation.

리튬 2차 전지의 1차원 열적 특성을 고려한 임피던스예측 (Impedance Estimation for Lithium Secondary Battery According to 1D Thermal Modeling)

  • 이정수;임근욱;김광선;조현찬;유상길
    • 반도체디스플레이기술학회지
    • /
    • 제7권2호
    • /
    • pp.13-17
    • /
    • 2008
  • In this paper, in order to get the characteristics of the lithium secondary cell, such as charge and discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc, we build a thermal model that estimate the impedance of battery by experiment & simulation. In this one-dimensional model, Seven governing equations are made to solve seven variables c, $c_s,\;\Phi_1,\;\Phi_2,\;i_2$, j and T. The thermal model parameters used in this model have been adjusted according to the experimental data measured in the laboratory. The result(Voc, Impedance) of this research can be used in BMS(Battery Management System), so an efficient method of using battery is developed.

  • PDF

통합 열관리 시스템의 제어를 위한 수소-전기 하이브리드 기반 고정밀 소형 선박 시뮬레이터 모델 개발 (Development of a High-precision Small Ship Simulator Model Based on Hydrogen-electric Hybrid to Control an Integrated Thermal Management System)

  • 안민우;현대일;한재영
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.230-239
    • /
    • 2024
  • Efforts are being made to replace ship diesel engines with electric propulsion motors in response to emission regulations. In particular, in the case of short-range small ships, research is being conducted to replace polymer electrolyte membrane fuel cells (PEMFC) with power sources. However, PEMFC has problems such as slow dynamic response characteristics and reduced durability at high temperatures. To solve this problem, a high-precision ship model was developed with power distribution and thermal management strategies applied, and through this, the required power, heat, and power characteristics of the propulsion system according to the ship's speed profile were analyzed.

2.3 kW급 전기자동차 배터리팩용 냉각 장치의 열전달 특성에 관한 해석적 연구 (Numerical Analysis of Heat Transfer Characteristics of Cooling System for 2.3 kW EV Battery Pack)

  • 성동민;박용석;성홍석;서정세
    • 한국기계가공학회지
    • /
    • 제21권6호
    • /
    • pp.44-49
    • /
    • 2022
  • The improvement in the battery performance and life using a battery thermal management system directly affects the improvement in the performance, life, and energy efficiency of electric vehicles. Therefore, this study numerically analyzed the heat exchange processes between the coolant inside the cooling plate channel and the heat generated by the battery. The cooling performance was analyzed based on the average temperature, temperature uniformity, and the maximum and minimum temperature differences of the battery. A performance difference existed depending on the coolant inlet temperature but showed the same tendency of cooling performance according to the shape of each plate's channel. Type 1 showed the best results in terms of battery temperature uniformity, which is the most important measure of battery performance; Type 2 showed the best results in terms of the average temperature of the battery; and Type 3 showed the best results in terms of the maximum and minimum temperature differences of the battery compared with that of the other cooling plates.

고정익 항공기 저온 시동 성능의 품질 신뢰성 향상에 관한 실증적 연구 (An Empirical Study on the Quality Reliability of the Start-up performance of the Fixed Wing Aircraft at low temperature)

  • 김대운;정수헌
    • 품질경영학회지
    • /
    • 제46권1호
    • /
    • pp.169-188
    • /
    • 2018
  • Purpose: The purpose of this study is to analyze low-temperature starting performance of the light attacker and to search and improve the aircraft system including battery and Battery Charge and Control Unit(BCCU). Methods: In order to improve the starting up performance of the light attacker at low-temp, various deficiency cause were derived and analyzed using Fault Tree Analysis method. As a result, it was confirmed there were drawbacks in the charging and discharging mechanism of the battery. The inactivation of the battery's electrolyte at low-temp and the premature termination of the battery charge were the main cause. After long error and trial, we improved these problems by improving performance of battery and optimizing the charging algorithm of BCCU. Results: It was confirmed that the problems of starting up failures were solved through the combined performance test of the battery and BCCU, the ground test using the aircraft system and the operation test conducted by Korea Airforce operating unit for 3 months in winter. Conclusion: This study showed that the improvement of quality reliability was achieved and thus the start-up performance issue of the light attacker has been resolved at low temperature. And it is expected that the design methodologies of temperature-affected electrical system of aircraft will contribute to the development of the aircraft industry in the future.

하이브리드/전기 자동차 배터리 냉각 시스템의 냉각수 유동 특성이 냉각 성능에 미치는 영향에 대한 해석적 연구 (Effect of Coolant Flow Characteristics in Cooling Plates on the Performance of HEV/EV Battery Cooling Systems)

  • 오현종;박성진
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.179-185
    • /
    • 2014
  • Average temperature and temperature uniformity in a battery cell are the important criteria of the thermal management of the battery pack for hybrid electric vehicles and electric vehicles (HEVs and EVs) because high power with large size cell is used for the battery pack. Thus, liquid cooling system is generally applied for the HEV/EV battery pack. The liquid cooling system is made of multiple cooling plates with coolant flow paths. The cooling plates are inserted between the battery cells to reject the heat from batteries to coolant. In this study, the cooling plate with U-shaped coolant flow paths is considered to evaluate the effects of coolant flow condition on the cooling performance of the system. The counter flow and parallel flow set up is compared and the effect of flow rate is evaluated using CFD tool (FLUENT). The number of counter-flows and flow rate are changed and the effect on the cooling performance including average temperature, differential temperature, and standard deviation of temperature are investigated. The results show that the parallel flow has better cooling performance compared with counter flow and it is also found that the coolant flow rate should be chosen with the consideration of trade-off between the cooling performance and pressure drop.

MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계 (Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink)

  • 미흐렛 가아브레슬라세 마루;김민;변기식;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

공기 유로 형상에 따른 공랭식 전기자동차 배터리 시스템의 냉각 성능 예측 (Predictions of the Cooling Performance on an Air-Cooled EV Battery System According to the Air Flow Passage Shape)

  • 정석훈;서현규
    • 대한기계학회논문집B
    • /
    • 제40권12호
    • /
    • pp.801-807
    • /
    • 2016
  • 본 논문은 전기자동차 배터리 시스템에 공기를 이용한 직접 냉각 방식을 적용하여, 공기 유로 형상에 따른 냉각 성능을 비교 연구하였다. 이를 위해, 배터리 냉각 시스템에서 모듈의 배치 형상과 발열량을 고정하고, 입 출구 면적 및 외부 Case 형상을 변경하여, 이에 따른 냉각 성능 결과를 수치 해석적으로 비교 분석하였다. 해석 결과는 배터리 내부의 공기 유동 유선(Stream line), 속도장 분포(Velocity field), 온도 분포(Temperature distributions)를 정리하여 제시하였다. 해석 결과, 외기온도 $25^{\circ}C$에서 안정적인 배터리 작동온도인 $50^{\circ}C$ 이하를 만족하기 위해서는 공기의 유입 체적이 $400m^3/h$ 이상이 되어야 함을 확인할 수 있었다. 또한, 출구 부근의 Diffuser 형상을 가지는 해석 조건에서 냉각이 끝난 공기의 배출이 원활히 진행되면서 냉각 성능이 향상되는 것을 알 수 있었다.

단상계 침지냉각 기술이 적용된 Li-ion계 배터리 발열특성에 관한 연구 (A Study on Heating Characteristics of Li-ion Battery Applicated Single-phase Immersion Cooling Technology)

  • 김운학;강석원;신기석
    • 한국재난정보학회 논문집
    • /
    • 제18권1호
    • /
    • pp.163-172
    • /
    • 2022
  • 연구목적: Li-ion 배터리의 효율적인 열관리 기술을 확보하기 위하여 Single&-phase 침지 냉각 기술을 적용한 시스템의 실험을 통하여 적용가능성을 확인하고자 하였다. 연구방법: LG-Chem에서 생산된 JH3 파우치 셀을 사용하여 14S2P 모듈을 제조하여 미국 카길사에서 생산된 식물성계 냉각유체에 침지한 후 0.3C~1C 속도로 충방전을 시행하여 열분포를 확인하였다. 연구결과: 침지냉각 기술로 배터리 모듈을 40℃ 이하의 온도로 관리할 수 있으며, 침지액의 분자구조 변화가 없다는 결과를 도출하였다. 결론: 침지냉각 방식이 Li-ion 배터리 열관리에 적용 가능함을 확인하였다.

연료전지/배터리 하이브리드 차량 개발 (Development of Fuel Cell/Battery Hybrid Vehicle)

  • 손영준;박구곤;임성대;엄석기;양태현;윤영기;이원용;김창수
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2005년도 수소연료전지공동심포지움 2005논문집
    • /
    • pp.103-110
    • /
    • 2005
  • Fuel cell systems are consisted of various parts, for example fuel cell stack, fuel supplier, electrical converters, controllers and so on. Each components of system should have appropriate specification for their applications as well as simplicity. Because thermal load can be managed simply by using fans without any water cooling system, the air-cooled PEMFC is widely used in sub kW and around 1kW systems. The performance of an air-cooled system is highly dependent on ambient temperature and humidity. In this paper, the air-cooled PEMFC systems are developed and investigated to study the operating characteristics in the aspect of the thermal and water coupled management by the control of the axial fans and compressors. Various experiments were also conducted to get the cell voltage distribution, the relative humidity of the reactant gas and the thermal management by axial cooling fans, which cannot be observed in single cell experiment. After then, as practical applications, portable fuel cell system and a hybrid electric cart were successfully integrated and operated by using this air-cooled stack.

  • PDF