• Title/Summary/Keyword: Battery size

Search Result 490, Processing Time 0.023 seconds

Preparation and Electrochemical Characterization of Si/C/CNF Anode Material for Lithium ion Battery Using Rotary Kiln Reactor (회전킬른반응기를 이용한 리튬이온전지용 Si/C/CNF 음극활물질의 제조 및 전기화학적 특성 조사)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.901-908
    • /
    • 2018
  • Graphite is used as a sample anode active material. However, since the maximum theoretical capacity is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of a high capacity lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is higher than that of graphite. However, it is not suitable for direct application to the anode active material because it has a volume expansion of 400%. In order to minimize the decrease of the discharge capacity due to the volume expansion, the Si was pulverized by the dry method to reduce the mechanical stress and the volume change of the reaction phase, and the change of the volume was suppressed by coating the carbon layers to the particle size controlled Si particles. And carbon fiber is grown like a thread on the particle surface to control secondary volume expansion and improve electrical conductivity. The physical and chemical properties of the materials were measured by XRD, SEM and TEM, and their electrochemical properties were evaluated. In this study, we have investigated the synthesis method that can be used as anode active material by improving cycle characteristics of Si.

A Study on the Expansion of Secondary Battery Manufacturing Technology through the Scale of V4 and Energy Platform (V4와 에너지 플랫폼 규모화를 통한 2차 전지 제조 기술 확대 방안)

  • Seo, Dae-Sung
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.87-94
    • /
    • 2022
  • This paper seeks to raise inflection points of battery manufacturing bases in Korea in the V4 region through the reorganization of new industrial technologies in accordance with ESG. As a result, the global supply chain market is cut off. The Russian-Ukraine war and the U.S.-China hegemony are competing in the economic crisis caused by COVID-19. It is showing diversification of new suppliers in an environment where mineral, grain procurement, gas, and even wheat imports from China and Russia are not possible. As a protective glocal, this area is used as a buffer zone(Pro-Russia, Hungary). to an isolated zone(anti-Russia, Poland) by war. In this paper, economic growth is expected to slow further due to the EU tapering period and high inflation in world countries. Due to these changes, the conversion of new tech industry and the contraction of Germany's structure due to energy supply may lose the driving force for economic growth over the past 20 years. This is caused by market disconnection(chasm) in the nominal indicators in this area. On the other hand, Korea should actively develop into the V4 area as an energy generation export (nuclear and electric hydrogen generation) area as a bypass development supply area due to the imbalance in the supply chain of rare earth materials that combines AI. By linking this industry, the energy platform can be scaled up and reliable supply technology (next generation BT, recycling technology) in diversification can be formed in countries around the world. This paper proves that in order to overcome the market chasm caused by the industries connection, new energy development and platform size can be achieved and reliable supply technology (next-generation battery and recycling technology, Low-cost LFP) can be diversified in each country.

The Effect of Dietary Fiber Levels on the Size of Brolier′s Gut and Chromium Turnover Time in Each Segment (사료내 섬유소 수준이 브로일러의 소화기 발달과 장 내용물의 통과 시간에 미치는 영향)

  • Nahm K. H.;Carlson C. W.
    • Korean Journal of Poultry Science
    • /
    • v.14 no.1
    • /
    • pp.9-13
    • /
    • 1987
  • Three-week-old, broiler-type, mixed sex chicks were divided into replicate groups of 10 birds each and fed for 5 weeks. The wheat bran was defatted and added at 0, 10 and 20% levels. A fourth group received the 20% wheat bran plus a cellulase enzyme added at the level of 0.008%. After a five-week experimental period without a marker a 24-pen battery on the four diets were supplemented with 1% chromic oxide and fed 100g daily. After a 2-day preliminary period, feces were collected three times daily from each diet group for two days at 2, 4 or 8 hours after feeding. At the end of 4 days, within each diet group, birds were randomly selected for slaughter at 2, 4 or 8 hours after feeding and the entire gastrointestinal tract was removed and ligated to form five compartments. The lengths of each segment were measured after straightening, and the gizzard was emptied and weighed. The summarized data showed that the group fed on the high-energy basal diet had the lowest gizzard weight (P〈0.05). Chromium turnover time (minutes) in the each segment and entire GI tract of chicks was not influenced by the high fiber diet or cellulase.

  • PDF

A study on the fabrication of lithium carbonation powder by gas-liquid reaction using ultrasonic energy (탄산리튬 분말 제조에 있어서 초음파 에너지를 적용한 기액반응에 관한 연구)

  • Kim, Dae-Weon;Kim, Bo-Ram;Choi, Hee-Lack
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.55-60
    • /
    • 2020
  • In the previous study, we reported the result to prepare lithium carbonate powder from various lithium-contained solution. Therefore, using the lithium hydroxide solution, it is conformed that the reaction could occur thermodynamically, and the recovery rate of lithium was 89.4 %. In this study, we carried out the experiment to prepare lithium carbonate powder through gas-liquid reactions with lithium hydroxide solution and CO2 gas using ultrasound energy. In case ultrasonic energy is applied to the reaction of lithium carbonate, the recovery rate of lithium at room temperature was approximately 83.8 %, and the recovery rate of lithium was greatly increased to approximately 99.9 % at 60℃ reaction temperature. And when ultrasonic energy is not applied, the particle size of lithium carbonate powder was 7.7 ㎛ in D50. But the particle size of lithium carbonate powder was significantly reduced to 8.4 ㎛ in D50 under the influence of ultrasonic.

Development of Sound Frequency Analyser using an Ultra-Low Power MCU (초저전력 Micro Controller Unit(MCU)를 활용한 소리 주파수 분석기 개발)

  • Choi, Jae-Hoon;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.4
    • /
    • pp.403-410
    • /
    • 2016
  • Materials made of metals have their own manifest resonant frequencies. Using this property, the quality test of products from the factory can be performed. An impact is applied to the product and the frequencies of the sound and/or vibration are measured using high-end equipments. They use a general purpose computer or a DSP(: Digital Signal Processor)-based stand-alone system which is usually too large in-size to carry and expensive to build. In this paper, we introduce a system that is developed based on a MSP430 MCU(:Micro-Controller Unit) from TI(: Texas Instruments). The ultra-low power MSP430 MCUs make it possible to make a frequency analyzer in a very small size without the need of using a large-size battery. The proposed system can be used in situations where the frequency analyzer should be carried easily with an investigator and should be built at low cost sacrificing some accuracy. We implemented the system using a launchpad supplied by TI and could confirm that the proposed system could identify with a high-accuracy the frequencies of various artificial and natural sounds.

Properties of LiNiO2 Powders Prepared by Spray Pyrolysis Process (분무열분해 공정에 의해 합성된 LiNiO2 분말의 특성)

  • Ju, Seo-Hee;Kang, Yun-Chan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.297-303
    • /
    • 2008
  • $LiNiO_2$ cathode powders with fine size have been synthesized by spray pyrolysis from the spray solution with citric acid and ethylene glycol. The as-prepared powders with spherical shape, porous structure and micron size turned into $LiNiO_2$ powders with micron size and regular morphology after post-treatment at $800^{\circ}C$. The initial discharge capacities of the $LiNiO_2$ powders changed from 199 to 171mAh/g when the concentrations of the citric acid and ethylene glycol added to the spray solutions were changed from 0 to 1 M. The maximum initial discharge capacity of the $LiNiO_2$ powders obtained from the spray solution with citric acid and ethylene glycol was 198 mAh/g when the lithium component added to the spray solution was 6 mol% excess of the stoichiometric amount. The discharge capacities of the fine-sized $LiNiO_2$ powders dropped from 198 to 163 mAh/g by the 30 th cycle at a current density of 0.1 C.

Development of Synthetic Jet Micro Air Pump (Synthetic Jet 마이크로 에어펌프의 개발)

  • Choi, J.P.;Kim, K.S.;Seo, Y.H.;Ku, B.S.;Jang, J.H.;Kim, B.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.594-599
    • /
    • 2008
  • This paper presents a micro air pump based on the synthetic jet to supply reactant at the cathode side for micro fuel cells. The synthetic jet is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. Therefore, it is very important that the design parameters are optimized because of the simple configuration. To design the synthetic jet micro air pump, a numerical analysis has been conducted for flow characteristics with respect to various geometries. From results of numerical analysis, the micro air pump has been fabricated by the PDMS replication process. The most important design factors of the micro air pump in micro fuel cells are the small size and low power consumption. To satisfy the design targets, we used SP4423 micro chip that is high voltage output DC-AC converter to control the PZT. The SP4423 micro chips can operate from $2.2{\sim}6V$ power supply(or battery) and is capable of supplying up to 200V signals. So it is possible to make small size controller and low power consumption under 0.1W. The size of micro air pump was $16{\times}13{\times}3mm^3$ and the performance test was conducted. With a voltage of 3V at 800Hz, the air pump's flow rate was 2.4cc/min and its power consumption was only 0.15W.

Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres (공기와 질소 분위기에서 공침법으로 합성된 Ni1/3Co1/3Mn1/3(OH)2 분말의 특성 비교)

  • Choi, Woonghee;Park, Se-Ryen;Kang, Chan Hyoung
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.136-142
    • /
    • 2016
  • As precursors of cathode materials for lithium ion batteries, $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders are prepared in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH in the presence of $NH_4OH$ in air or nitrogen ambient. Calcination of the precursors with $Li_2CO_3$ for 8 h at $1,000^{\circ}C$ in air produces dense spherical cathode materials. The precursors and final powders are characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analysis, tap density measurement, and thermal gravimetric analysis. The precursor powders obtained in air or nitrogen ambient show XRD patterns identified as $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$. Regardless of the atmosphere, the final powders exhibit the XRD patterns of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (NCM). The precursor powders obtained in air have larger particle size and lower tap density than those obtained in nitrogen ambient. NCM powders show similar tendencies in terms of particle size and tap density. Electrochemical characterization is performed after fabricating a coin cell using NCM as the cathode and Li metal as the anode. The NCM powders from the precursors obtained in air and those from the precursors obtained in nitrogen have similar initial charge/discharge capacities and cycle life. In conclusion, the powders co-precipitated in air can be utilized as precursor materials, replacing those synthesized in the presence of nitrogen injection, which is the usual industrial practice.

Preparation of Ag Nano-Powder from Aqueous Silver Nitrate Solution through Reduction with Hydrazine Hydrate (Hydrazine Hydrate 환원(還元)에 의한 질산은(窒酸銀) 수용액(水溶液)으로부터 은(銀) 나노분말(粉末)의 제조(製造) 연구(硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.19-26
    • /
    • 2006
  • The preparation of Ag nano-powder from aqueous silver nitrate solution, which would be available for the recycling of silver bearing wastes, was investigated by a reductive precipitation reaction using hydrazine hydrate as a reducing agent. Silver solution was prepared by dissolving silver nitrate with distilled water, and then the dispersant, Tamol NN8906 or Tween 20, was also mixed to avoid the agglomeration of particles during the reductive reaction followed by the addition of hydrazine hydrate to prepare Ag nano-particles. Ag particles obtained from the reduction reaction from silver solution were characterized using the particle size analyzer and TEM to determine the particle size distribution and morphology. It was found that about 100% excess of hydrazine hydrate was required to reduce completely silver ions in the solution. Ag powders with very narrow distribution could be obtained when Tamol NN8906 was used as the dispersant. In case of Tween 20, the particle size distribution showed typically the bimodal or multimodal distribution and the morphology of Ag particles was found to be irregular shape in both cases.

Fabrication of TiO2 Coated Si Nano Particle using Silicon Sawing Sludge (실리콘 절삭 슬러지를 이용한 TiO2 코팅 나노 실리콘 입자의 제조)

  • Seo, Dong Hyeok;Yim, Hyeon Min;Na, Ho Yoon;Kim, Won Jin;Kim, Ryun Na;Kim, Woo-Byoung
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.423-428
    • /
    • 2021
  • Here, we report the development of a new and low-cost core-shell structure for lithium-ion battery anodes using silicon waste sludge and the Ti-ion complex. X-ray diffraction (XRD) confirmed the raw waste silicon sludge powder to be pure silicon without other metal impurities and the particle size distribution is measured to be from 200 nm to 3 ㎛ by dynamic light scattering (DLS). As a result of pulverization by a planetary mill, the size of the single crystal according to the Scherrer formula is calculated to be 12.1 nm, but the average particle size of the agglomerate is measured to be 123.6 nm. A Si/TiO2 core-shell structure is formed using simple Ti complex ions, and the ratio of TiO2 peaks increased with an increase in the amount of Ti ions. Transmission electron microscopy (TEM) observations revealed that TiO2 coating on Si nanoparticles results in a Si-TiO2 core-shell structure. This result is expected to improve the stability and cycle of lithium-ion batteries as anodes.