• Title/Summary/Keyword: Battery management technology

Search Result 198, Processing Time 0.028 seconds

An Experimental Study for Optimal RF Output Power Estimation of Wireless Sensor Network (건물 용도별 무선계측 최적 전파강도 산정을 위한 실험적 연구)

  • Yee, Jurng-Jae;Choi, Seok-Yong;Cho, Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.462-467
    • /
    • 2009
  • Researches and developments on BEMS are performed world-widely through sustainable management in various conditions. However, there are many obstacles to adapt the system in existing buildings because it needs highly expensive equipments, which are designed for newly built buildings, to install. Therefore, there are numerous limits exist when applying the BEMS in established buildings. The purpose of this study estimates the optimization of RF output power in WSN(Wireless Sensor Networks), which is the essential technology to develop PEMS. The results of this study is as follows ; 1) Applying WSN technique in buildings was possible. 2) As RF output power increases, the number of relay node reduced, therefore, the WSN showed more stability. 3) When estimating optimal RF output power in school, it should be considered between the number of relay node and RF output power. 4) Considering battery consumption and possibility of reception, the best suited RF output power is -20dbm in apartment house.

Enhanced Switching Pattern to Improve Energy Transfer Efficiency of Active Cell Balancing Circuits Using Multi-winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로의 에너지 전달 효율을 높이기 위한 향상된 스위칭 패턴)

  • Lee, Sang-Jung;Kim, Myoungho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • This study proposes an enhanced switching pattern that can improve energy transfer efficiency in an active cell-balancing circuit using a multiwinding transformer. This balancing circuit performs cell balancing by transferring energy stored in a specific cell with high energy to another cell containing low energy through a multiwinding transformer. The circuit operates in flyback and buck-boost modes in accordance with the energy transfer path. In the conventional flyback mode, the leakage inductance of the transformer and the stray inductance component of winding can transfer energy to an undesired path during the balancing operation. This case results in cell imbalance during the cell-balancing process, which reduces the energy transfer efficiency. An enhanced switching pattern that can effectively perform cell balancing by minimizing the amount of energy transferred to the nontarget cells due to the leakage inductance components in the flyback mode is proposed. Energy transfer efficiency and balancing speed can be significantly improved using the proposed switching pattern compared with that using the conventional switching pattern. The performance improvements are verified by experiments using a 1 W prototype cell-balancing circuit.

Application for Measurement of Curing Temperature of Concrete in a Construction Site using a Wireless Sensor Network (무선센서네트워크에 의한 콘크리트 양생온도 계측에 관한 현장 적용성 연구)

  • Lee, Sung-Bok;Bae, Kee-Sun;Lee, Do-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • As the construction industry has recently been transformed by the emergence of ubiquitous and intelligent technology, there have been major changes in the management methods employed. Specifically, next-generation construction management systems have been developed that collect and analyze many pieces of information in real time by using various wireless sensors and networks. The purpose of this study is to understand the current status of Ubiquitous Sensor Networks (USN) in the construction sector, and to gain fundamental data for a system of measuring concrete curing temperature in a construction site that employs a USN. By investigating the application status of USN, it was confirmed that USN has mainly been applied to the maintenance of facilities, safety management, and quality control. In addition, a field experiment in which the curing temperature of concrete was measured using a USN was carried out to evaluate two systems with wireless sensor networks, and the applicability of these systems on site was confirmed. However, it is estimated that the embedded wireless sensor type is affected by metal equipment on site, internal battery of sensor and concrete depth, and studies to provide more stable system by USN are thus required.

A Study on Development of Independent Low Power IoT Sensor Module for Zero Energy Buildings (제로 에너지 건축물을 위한 자립형 저전력 IoT 센서 모듈 개발에 대한 연구)

  • Kang, Ja-Yoon;Cho, Young-Chan;Kim, Hee-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.273-281
    • /
    • 2019
  • The energy consumed by buildings among the total national energy consumption is more than 10% of the total. For this reason, Korea has adopted the zero energy building policy since 2025, and research on the energy saving technology of buildings has been demanded. Analysis of buildings' energy consumption patterns shows that lighting, heating and cooling energy account for more than 60% of total energy consumption, which is directly related to solar power acquisition and window opening and closing operation. In this paper, we have developed a low - power IoT sensor module for window system to transfer acquired information to building energy management system. This module transmits the external environment and window opening / closing status information to the building energy management system in real time, and constructs the network to actively take energy saving measures. The power used in the module is designed as an independent power source using solar power among the harvest energy. The topology of the power supply is a Buck converter, which is charged at 4V to the lithium ion battery through MPPT control, and the efficiency is about 85.87%. Communication is configured to be able to transmit in real time by applying WiFi. In order to reduce the power consumption of the module, we analyzed the hardware and software aspects and implemented a low power IoT sensor module.

Public Electric Car Charging Locations Based on Car Navigation Data in Seoul (네비게이션 데이터를 바탕으로 한 서울시의 공공 전기차 충전소 위치)

  • Taekyung Kim;Jangyoung Kim;Yoon Gi Yang
    • Information Systems Review
    • /
    • v.18 no.4
    • /
    • pp.1-15
    • /
    • 2016
  • Electric cars are expected to increase quality of life by reducing air pollution and to contribute to economic growth by creating new businesses. However, electric car adoption has lagged and has not satisfied public expectation. One of the primary reasons for this outcome is the slow charging speed or inconvenience of charging a battery. Under the insufficient diffusion of electric cars, pushing business entities to construct charging facilities is undesirable for a policy maker to increase the adoption rate because of cost and management issues. This study adopts the design science methodology to interpret the problem of deploying electric car charging stations in the view of information systems. A trip planning algorithm is suggested on the basis of the theory of range anxiety. We investigate issues related to the current charging locations using data from drivers' car navigation devices. We also review its applicability to trip planning to obtain insights.

A Fully Integrated SoC for Smart Capsule Providing In-Body Continuous pH and Temperature Monitoring

  • Liu, Heng;Jiang, Hanjun;Xia, Jingpei;Chi, Zhexiang;Li, Fule;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.542-549
    • /
    • 2016
  • This paper presents a SoC (System-on-a-Chip) dedicated for a single-chip smart capsule which can be used to continuously monitor human alimentary canal pH and temperature values. The SoC is composed of the pH and temperature sensor interface circuit, a wireless transceiver, the power management circuit and the flow control logic. Fabricated in $0.18{\mu}m$ standard CMOS technology, the SoC occupies a die area of ${\sim}9 mm^2$. The SoC consumes 6.15 mW from a 3 V power supply, guaranteeing the smart capsule battery life is no less than 24 hours when using 50 mAh coin batteries. The experimental results show that measurement accuracy of the smart capsule is ${\pm}0.1$ pH and ${\pm}0.2^{\circ}C$ for pH and temperature sensing, respectively, which meets the requirement of in-body pH and temperature monitoring in clinical practice.

Power System Development of Unmanned Aerial Vehicle using Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지를 이용한 무인비행체 동력시스템 설계)

  • Jee, Yeong-Kwang;Sohn, Young-Jun;Park, Gu-Gon;Kim, Chang-Soo;Choi, Yu-Song;Cho, Sung-Baek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • In this paper, the development and performance analysis of a fuel cell-powered unmanned aerial vehicle is described. A fuel cell system featuring 1 kW proton exchange membrane fuel cell combined with a highly pressurized fuel supply system is proposed. For the higher fuel consumption efficiency and simplification of overall system, dead-end type operation is chosen and each individual system such as purge system, fuel supply system, cooling system is developed. Considering that fluctuation of exterior load makes it hard to stabilize fuel cell performance, the power management system is designed using a fuel cell and lithium-ion battery hybrid system. After integration of individual system, the performance of unmanned aerial vehicle is analyzed using data from flight and laboratory test. In the result, overall system was properly operated but for more duration of flight, research on weight lighting and improvement of fuel efficiency is needed to be progressed.

Research on Basic Concept Design for Digital Twin Ship Platform (디지털트윈 선박 플랫폼 설계를 위한 연구)

  • Yoon, Kyoungkuk;Kim, Jongsu;Jeon, Hyeonmin;Lim, Changkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1086-1091
    • /
    • 2022
  • The International Maritime Organization is establishing international agreements on maritime safety and security to prepare for the introduction of autonomous ships. In Korea, the industry is focusing on autonomous navigation system technology development, and to reduce accidents involving coastal ships, research on autonomous ship technology application plans for coastal ships is in progress. Interest in autonomously operated ships is increasing worldwide, and maritime demonstrations for verification of developed technologies are being pursued. In this study, a basic investigation was conducted on the design of a demonstration ship and an onshore platform (remote support center) using digital twin technology for application to coastal ships. To apply digital twin technology, an 8-m small battery-powered electric propulsion ship was selected as the target. The basic design of the twin-integrated platform was developed. The ship navigation and operation data were stored on a server system, and remote-control commands of the electric propulsion ship was achieved through communication between the ship and the onshore platform. Ship performance management, operation and operation optimization, and predictive control are possible using this digital twin technology. This safe and economical digital twin technology is applicable to ships responding to crisis scenarios.

Satellite Anomalous Behavior Detection System through Rough-Set and Fuzzy Model (러프집합과 퍼지 모델을 이용한 인공위성의 이상 동작 검출 시스템)

  • Yang, Seung-Eun
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.35-40
    • /
    • 2017
  • Out-of-limit (OOL) alarm method that is threshold checking of telemetry value is widely used for the satellites fault diagnosis and health monitoring. However, it requires engineering knowledge and effort to define delicate threshold value and has limitations that anomalous behaviors within the defined limits can't be detected. In this paper, we propose a satellite anomalous behavior detection system through fuzzy model that is composed by important statistical feature selected by rough-set theory. Not pre-defined anomaly is detected because only normal state data is used for fuzzy model. Also, anomalous behavior within the threshold limit is detected by using statistic feature that can be collected without engineering knowledge. The proposed system successfully detected non-ordinary state for battery temperature telemetry.

A Code-level Parallelization Methodology to Enhance Interactivity of Smartphone Entertainment Applications (스마트폰 엔터테인먼트 애플리케이션의 상호작용성 개선을 위한 코드 수준 병렬화 방법론)

  • Kim, Byung-Cheol
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.381-390
    • /
    • 2015
  • One of the fundamental requirements of entertainment applications is interactivity with users. The mobile device such as the smartphone, however, does not guarantee it due to the limit of the application processor's computing power, memory size and available electric power of the battery. This paper proposes a methodology to boost responsiveness of interactive applications by taking advantage of the parallel architecture of mobile devices which, for instance, have dual-core, quad-core or octa-core. To harness the multi-core architecture, it exploits the POSIX thread, a platform-independent thread library to be able to be used in various mobile platforms such as Android, iOS, etc. As a useful application example of the methodology, a heavy matrix calculation function was transformed to a parallelized version which showed around 2.5 ~ 3 times faster than the original version in a real-world usage environment.