
Journal of Digital Convergence❙ 381

http://dx.doi.org/10.14400/JDC.2015.13.12.381

A Code-level Parallelization Methodology to Enhance Interactivity

of Smartphone Entertainment Applications

Byung-Cheol Kim

Information and Culture Technology Studies, Seoul National University

스마트폰 엔터테인먼트 애플리케이션의 상호작용성 개선을

위한 코드 수준 병렬화 방법론

김병철
서울대학교 정보문화학전공

Abstract One of the fundamental requirements of entertainment applications is interactivity with users. The
mobile device such as the smartphone, however, does not guarantee it due to the limit of the application
processor’s computing power, memory size and available electric power of the battery. This paper proposes a
methodology to boost responsiveness of interactive applications by taking advantage of the parallel architecture
of mobile devices which, for instance, have dual-core, quad-core or octa-core. To harness the multi-core
architecture, it exploits the POSIX thread, a platform-independent thread library to be able to be used in
various mobile platforms such as Android, iOS, etc. As a useful application example of the methodology, a
heavy matrix calculation function was transformed to a parallelized version which showed around 2.5 ~ 3 times
faster than the original version in a real-world usage environment.

Key Words : Smartphone Applications, Parallelization, Thread, POSIX, Matrix Calculation

요 약 스마트폰과 같은 이동형 장치들은 계산 성능이나 메모리 크기, 배터리 전력량 등의 한계로 인해 엔터테인먼
트 애플리케이션이 요구하는 상호작용성을 보장하기 어렵다. 이를 해결하기 위해 본 논문에서는 상호작용이 필수적
인 애플리케이션의 응답 속도를 개선할 수 있는 코드 수준 병렬화 방법론을 제안한다. 이 방법을 적용하면, 스마트
폰 등에서 제공하는 멀티코어 아키텍쳐를 바탕으로 기존 애플리케이션의 모노코어 알고리즘을 복잡한 재설계 없이
코드 수준에서 병렬화 할 수 있다. 특히 플랫폼 독립적인 표준 쓰레드 라이브러리인 POSIX 쓰레드를 활용하면 안드
로이드나 iOS등의 다양한 스마트폰 플랫폼에서 본 방법론을 적용할 수 있다. 이의 효과적인 응용 사례로서 수백만
개의 원소를 처리하는 행렬 연산 함수를 병렬화 해보았고 실사용 환경에서 약 3배가량의 성능 향상을 확인하였다.

주제어 : 스마트폰 애플리케이션, 병렬화, 쓰레드, POSIX, 행렬 계산

Received 24 October 2015, Revised 28 November 2015

Accepted 20 December 2015

Corresponding Author: Byung-Cheol Kim

(ITCT Studies, Seoul National University)

Email: clorvie@gmail.com

Ⓒ The Society of Digital Policy & Management. All rights

reserved. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial

License (http://creativecommons.org/licenses/by-nc/3.0), which

permits unrestricted non-commercial use, distribution, and

reproduction in any medium, provided the original work is

properly cited.
ISSN: 1738-1916

스마트폰 엔터테인먼트 애플리케이션의 상호작용성 개선을 위한 코드 수준 병렬화 방법론

382 ❙Journal of Digital Convergence 2015 Dec; 13(12): 381-390

1. Introduction

This paper describes some strategies and associated

techniques to boost the performance of compute- intensive

mobile applications without algorithmic re-design. This

assumes there is room for improvement beyond

algorithms, that is, the parallel architecture of the

computer.

Most general and popular ones of such parallel

features are multiple computing cores(e.g., dual-core,

quad-core, or octa-core)[1,2]. But revising of serial

algorithms to parallel ones is complex task of agonizing

pain. Thus various approaches and methodologies have

been suggested to simplify the process[3,4,5,6,7,8,9].

The proposed methodology is to parallelize

already-deployed algorithms at the code level.

Note that the target coding languages of concern are

C and C++. More specifically, a language which has full

access privileges to memory is required since

parallelization means multiplexing on data manipulation.

In that point, C/C++ are still the state-of-the-art

languages.

2. Using POSIX Threads

In utilizing a multi-core system there are multi-

process and multi-thread techniques. Practically, in

most cases, the latter is preferred[10]. Besides the fact

that a process is a relatively heavier structure than a

thread, the critical point is in data sharing over

processes or threads. IPC (Inter-Process Communication)

is very costly and limited because of the nature of the

process and, more importantly, system security. In

contrast, inter-thread communication is a little bit

trivial since all threads share the same memory space,

that is, the memory addresses of one process.

The POSIX thread, so called pthread, is an

inter-operable multi-threading technology as POSIX

stands for Portable Operating System Interface. For

example, source code which uses pthreads on a Linux

can be migrated onto the MS Windows without any

modification. It only needs re-compilation. Thus, in

order to take advantage of portability over mobile

platforms, multi-threading will be described based on

POSIX threads.

2.1 Basic Procedure

A typical procedure to apply a multi-threading

technique to existing compute-intensive code is as

follows:

Specifying and isolating a compute-intensive block,

Defining a thread function for the block, and

Replacing the block with the thread function.

Next subsections will explain them in more detail.

2.1.1 Specifying and isolating a compute-

intensive block

A compute-intensive block usually resides in a loop

due to its nature. It might be a block of nested loops.

To specify it is relatively easy because it must be one

of the bottleneck points in the entire processing. In

practice, we can track them down by examining the

elapsed time of each computing block. Then, the

outermost loop of the bottleneck block might be a

driver of threads, each computation content of which

comes from one computation step of the loop. For

example, the for loop with variable i in [Fig. 1] would

be the thread-driving loop and its inner part including

the nested loop would be the thread procedure like in

[Fig. 3].

To isolate a computation block means separation of

variables of all input, output, and intermediate data

from outside the block. Such data isolation is also

needed between loop steps. In other words, both input

data into and output data from one step of the

computing loop should be independent from another

step’s. If not, each thread that comes from the step

should be executed in order and that leads nothing but

parallelization.

A Code-level Parallelization Methodology to Enhance Interactivity of Smartphone Entertainment Applications

Journal of Digital Convergence❙ 383

void Foo(float s[], float r[], float a[], float b[], float c[])

{// assumption: float s[100], r[9000], a[9000], b[9000], c[9000];

int i, j, q;

// This nesting loop is the block to replace

for (i = 0; i < 100; i++) {

s[i] = 0;

// This nested loop is compute-intensive

for (j = 0; j < 90; j++) {

q = i*90;

r[q+j] = a[q+j] - b[q+j] * c[q+j];

s[i] += r[q+j];

}

s[i] /= 90.0f;

}

}

[Fig. 1] A target code example. s and r are
output while a, b, c are input.

In practice, all the related data should be collected

and had better be wrapped in one memory structure

such as struct or class as in [Fig. 2].

typedef struct {

float *pS, *pR;

float *pA, *pB, *pC;

} FooThreadData;

[Fig. 2] A wrapping structure for all the related
data in the block

2.1.2 Defining a thread function for the block

The definition of a pthread procedure basically

comes from the code inside the loop. A meaningful

difference is in that it uses its own data set separated

from another thread’s. Thus, the procedure is declared

with void pointers to input/output data to transport any

kind of wrapped data at once as in [Fig. 3].

Note that the output of each thread task should be

delivered to the caller using memory on heap or at least

the caller’s stack, too. The caller’s main job is to collect

the result of each thread and release the used memory

if needed.

void* FooThreadProcedure(void *pData)

{

// Convert the input from void to a member-accessible pointer

FooThreadData *pTD = (FooThreadData*)pData;

// Convenience variables for code readability and writability

float s = 0, *r = pTD->pR;

float *a = pTD->pA, *b = pTD->pB, *c = pTD->pC;

int j;

// The compute-intensive loop

for (j = 0; j < 90; j++) {

r[j] = a[j] - b[j] * c[j];

s += r[j];

}

s /= 90.0f;

*(pTD->pS) = s;

return pData;

}

[Fig. 3] An example thread definition for the
compute-intensive block in function
Foo(...)

2.1.3 Replacing the block with the thread function

The final task is to substitute the target

compute-intensive block with the defined thread

function.

Each thread starts its own lifetime by detaching

itself from the calling thread (e.g., function

FooThreaded(...) in [Fig. 4]). It implies that the former

cannot access the local memory(variables) in the

latter’s scope any longer. Therefore, at the beginning

inside the outermost loop, the wrapped data structure

for a thread procedure must be created as a dynamic

memory. Then, all the related data should be assigned

onto it in accordance with each thread’s input coverage

as of the comment ’Thread-2’ in [Fig. 4].

After setting the data, a thread is created using

pthread_create(...) with it. At this point, the created

thread will be executed independently from other

threads including its caller. It goes on only until the

given function (e.g., FooThreadProcedure(...)) ends.

The caller can wait for a thread to finish and get the

result using pthread_join(...) as of the comment

’Thread-2.5’ and ’Thread-3’ in [Fig. 4].

스마트폰 엔터테인먼트 애플리케이션의 상호작용성 개선을 위한 코드 수준 병렬화 방법론

384 ❙Journal of Digital Convergence 2015 Dec; 13(12): 381-390

// the number of cores + alpha (considering overhead)
#define NumOfThreads 5

void FooThreaded(float s[], float r[],
 float a[], float b[], float c[])

{
// assumption: float s[100], r[9000], a[9000], b[9000], c[9000];

// Thread-1. declarations
size_t iThread=0, nThreads=0, nMaxThreads = NumOfThreads;
// STL’s vector could be used instead of a plain array
pthread_t aThreads[NumOfThreads];
// each thread’s own input/output data
FooThreadData *pData, *pResult = NULL;
int i, rc, tCount;

for (i = 0; i < 100; i++) {
// Thread-2. distribute tasks among threads
pData = new FooThreadData();
pData->pS = s + i;
pData->pR = r + i*90;
pData->pA = a + i*90;
pData->pB = b + i*90;
pData->pC = c + i*90;

// create a thread
rc = pthread_create(&aThreads[iThread++], NULL,

FooThreadProcedure, (void*)pData);
nThreads++;

// Thread-2.5. inter-rim harvest
// to prevent an overflow of aThreads[]
if (nThreads >= nMaxThreads) {

if (iThread >= nMaxThreads)
iThread = 0;

// wait for the thread to finish
pthread_join(aThreads[iThread], (void**)&pResult);
if (pResult) {

/* collect and process on the result if needed */
delete pResult; // only if needed
pResult = NULL;

}
nThreads--;

}
}

// Thread-3. harvest threads' result

// should examine to the end of aThreads[]
if (nThreads >= nMaxThreads –1) {

for (tCount = 0; tCount < nMaxThreads; tCount++) {
// This equality means the cyclic reuse of the array
if (tCount == iThread) continue;
// wait for the thread to finish
pthread_join(aThreads[tCount], (void**)&pResult);
if (pResult) {

/* collect and process on the result if needed */
delete pResult; // only if needed
pResult = NULL;

}
}

}
// if there exist(s) unfinished thread(s)
else if (nThreads > 0) {

for (tCount = 0; tCount < nMaxThreads; tCount++) {
// This equality means the end of threading
if (tCount == iThread) break;
// wait for the thread to finish
pthread_join(aThreads[tCount], (void**)&pResult);
if (pResult) {

/* collect and process on the result if needed */
delete pResult; // only if needed
pResult = NULL;

}
}

}

// finally all cleared.
iThread = nThreads = 0;

}

[Fig. 4] A multi-threaded version of function
Foo(...)

3. Case Studies

3.1 SIFT Descriptor Extraction

Robust feature extraction techniques like SIFT

(Scale-Invariant Feature Transform) are getting an

increasing focus for mobile applications such as face

detection/recognition, image-based search, and so on.

Interactive use of such applications always requires

maximum utilization of computing resources. Thus, it

could be a target of parallelization discussed above.

A function shown in [Fig. 5] is one of the compute-

intensive blocks in computing SIFT descriptors[12].

Since it has a typical structure of repetition of the same

operations on a series of massive memory blocks, it

could be easily transformed into a threaded version like

[Fig. 6] and [Fig. 7].

/*

 Computes feature descriptors for features in an array.

 Based on Section 6 of Lowe's paper.

 @param features array of features

 @param gauss_pyr Gaussian scale space pyramid

 @param d width of 2D array of orientation histograms

 @param n number of bins per orientation histogram

*/

void compute_descriptors(CvSeq* features,

 IplImage*** gauss_pyr, int d, int n)

{

// The holder of main data

float*** hist;

struct feature* feat;

struct detection_data* ddata;

int i, k = features->total;

// For each feature

for (i = 0; i < k; i++) {

feat = CV_GET_SEQ_ELEM(struct feature, features, i);

ddata = feat_detection_data(feat);

// Evaluate orientation histograms

hist = descr_hist(gauss_pyr[ddata->octv][ddata->intvl],

 ddata->r, ddata->c, feat->ori, ddata->scl_octv, d, n);

// Convert the histograms to SIFT descriptors

hist_to_descr(hist, d, n, feat);

release_descr_hist(&hist, d);

}

}

[Fig. 5] A function to evaluate SIFT descriptors
excerpted from ‘OpenSIFT’ [12]

A Code-level Parallelization Methodology to Enhance Interactivity of Smartphone Entertainment Applications

Journal of Digital Convergence❙ 385

One point on which an attention should be given

here is the line right below ’Thread-2’ comment line in

[Fig. 9]. Instead of using new to prepare a thread-

specific data memory, it uses an element of an array

(aSIFTThreadData[]) which is declared as a global

variable outside the function. It is because dynamic

memory allocation imposes a non-negligible amount of

tasks on the kernel. Thus it is ought to be employed as

less as possible.

Note that the array is global which can be safely

accessed to outside the function (e.g., in

SIFTThreadProc()) as discussed in Section 2.1.3. And

consequently, it is no longer required to release the

allocated memory after each waiting for the end of a

thread as ’//delete pResult;’ in this case.

class SIFTThreadData

{

public:

int d, n;

struct feature* feat;

IplImage*** gauss_pyr;

};

void* SIFTThreadProc(void *pData)

{

SIFTThreadData* p = (SIFTThreadData*)pData;

struct detection_data* ddata = feat_detection_data(p->feat);

// Evaluate orientation histograms

float*** hist =

descr_hist(p->gauss_pyr[ddata->octv][ddata->intvl],

ddata->r, ddata->c, p->feat->ori,

ddata->scl_octv, p->d, p->n);

// Convert the histograms to SIFT descriptors

hist_to_descr(hist, p->d, p->n, p->feat);

release_descr_hist(&hist, p->d);

return pData;

}

[Fig. 6] A thread definition and its data structure
for function compute_descriptors(...)

The implementation was on Android 4.3 (Jellybean)

and the performance test was conducted on Samsung

Galaxy Note 3 of quad-core 2.3GHz application

processor(AP). On the input image of 640x480 pixels,

the original function was done in 1.8319 seconds while

the parallel version was done in 0.6066 seconds, about

3 times faster. Note that the specified number of

threads did not make a big difference from 5 to 200.

#define _NumOfSIFTThreads_ 100
SIFTThreadData aSIFTThreadData[_NumOfSIFTThreads_];

void compute_descriptors_thr(CvSeq* features,
 IplImage*** gauss_pyr, int d, int n)

{
// Thread-1. declarations
typedef unsigned int size_t;
size_t iThread = 0, nThreads = 0;
size_t nMaxThreads = _NumOfSIFTThreads_;
pthread_t aThreads[_NumOfSIFTThreads_];
SIFTThreadData *pThreadData, *pResult = NULL;
int i, k = features->total;

for (i = 0; i < k; i++) {
// Thread-2. distribute tasks among threads
// We just use an array instead.
//pThreadData = new SIFTThreadData();
pThreadData = aSIFTThreadData + iThread;
pThreadData->d = d;
pThreadData->n = n;
pThreadData->gauss_pyr = gauss_pyr;
pThreadData->feat =

CV_GET_SEQ_ELEM(struct feature, features, i);

int rc = pthread_create(&aThreads[iThread++], NULL,
SIFTThreadProc, (void*)pThreadData);

nThreads++;

// Thread-2.5. inter-rim harvest to prevent an overflow
if (nThreads >= nMaxThreads) {

if (iThread >= nMaxThreads)
iThread = 0;

pthread_join(aThreads[iThread], (void**)&pResult);
if (pResult) {

// We just use an array instead.//delete pResult;
pResult = NULL;

}
nThreads--;

}
 }

// Thread-3. harvest threads' result
if (nThreads >= nMaxThreads -1) {

for (size_t tCount = 0; tCount < nMaxThreads; tCount++) {
if (tCount == iThread) continue
pthread_join(aThreads[tCount], (void**)&pResult);
if (pResult) {

// We just use an array instead.//delete pResult;
pResult = NULL;

}
}

}
else if (nThreads > 0) {

for (size_t tCount = 0; tCount < nMaxThreads; tCount++) {
if (tCount == iThread) break
pthread_join(aThreads[tCount], (void**)&pResult);
if (pResult) {

// We just use an array instead.//delete pResult;
pResult = NULL;

}
}

}
iThread = nThreads = 0;

}

[Fig. 7] A multi-threaded function compute_
descriptors(...)

스마트폰 엔터테인먼트 애플리케이션의 상호작용성 개선을 위한 코드 수준 병렬화 방법론

386 ❙Journal of Digital Convergence 2015 Dec; 13(12): 381-390

3.2 Matrix Calculation

The high-resolution image/video processing such as

H.264 decoding needs a performance boost utilizing the

parallel architecture[11]. Handling such big images also

involves calculations of matrices of huge dimensions.

Thus operations on matrices could be another

compute-intensive example in the real world.

In practice, there are several implementations which

can deal with big matrix operations like matrix

multiplication, transpose, inverse calculation, etc. A

popular one of them[13] is GEMM(GEneralized Matrix

Multiplication) of OpenCV(Open Computer Vision

Library)[14]. As lots of vision or AR(Augmented

Reality) applications take advantage of OpenCV, its

embedded GEMM is getting popular too.

Therefore the OpenCV GEMM function is chosen to

be transformed using the proposed methodology. At a

glimpse, it looks much more complex than the previous

example, i.e., SIFT. But its skeleton is concise as

described in [Fig. 8∼9].

void gemm(InputArray matA, InputArray matB, double alpha,
 InputArray matC, double beta, OutputArray _matD, int flags)

{
const int block_lin_size = 128;
const int block_size = block_lin_size * block_lin_size;
/* omitted */
// 1. if trivial(~4x4 matrices), just calculate right here
/* omitted */
// 2. not trivial, indeed. further analysis required.
/* omitted before the last if-else statement */

// 3. a less severe case; we can simply multiply
if (((d_size.height <= block_lin_size/2 ||

 d_size.width <= block_lin_size/2) &&
len <= 10000) || len <= 10 ||
(d_size.width <= block_lin_size &&
 d_size.height <= block_lin_size && len <= block_lin_size)) {
singleMulFunc(A.data, A.step, B.data, b_step, Cdata, Cstep,
matD->data, matD->step, a_size, d_size, alpha, beta, flags);

}
// 4. the heaviest case; we should divide the matrices
// into blocks and multiply with them
else {
for (i = 0; i < d_size.height; i += di) {
di = dm0;
if (i + di >= d_size.height || 8*(i + di) + di > 8*d_size.height)
 di = d_size.height - i;

iThread = nThreads = 0;

/* The part here is in [Fig. 9] due to the size of this text box */

}// for i
}// else
/* omitted */

}

[Fig. 8] An example function of generalized
matrix multiplication excerpted from
function gemm(...) of OpenCV[14]

It is well organized thus powerful enough to

efficiently handle from very small matrices of like

2-by-2 to huge matrices of millions-by-millions. It

classifies the ranks of input matrices into several

categories and then accordingly calculate with them. In

the heaviest case, it divides input matrices into

sub-blocks (e.g., 128-by-128) and calculate them one

by one. That could be transformed into a

multi-threaded form as in [Fig. 10∼14]. Note that

another part such as singleMulFunc(...) function is also

one of the good targets to transform.

for (j = 0; j < d_size.width; j += dj) {
uchar* _d = matD->data + i*matD->step + j*elem_size;
const uchar* _c = Cdata + i*c_step0 + j*c_step1;
size_t _d_step = matD->step;
dj = dn0;
if (j + dj >= d_size.width || 8*(j + dj) + dj > 8*d_size.width)
 dj = d_size.width - j;
flags &= 15;
if (dk0 < len) {
_d = d_buf;
_d_step = dj*work_elem_size;

}
// This loop is a compute-intensive block to replace
for (k = 0; k < len; k += dk) {
const uchar* _a = A.data + i*a_step0 + k*a_step1;
size_t _a_step = A.step;
const uchar* _b = B.data + k*b_step0 + j*b_step1;
size_t _b_step = b_step;
Size a_bl_size;

dk = dk0;
if (k + dk >= len || 8*(k + dk) + dk > 8*len)
dk = len - k;

if (!is_a_t)
a_bl_size.width = dk, a_bl_size.height = di;

else
a_bl_size.width = di, a_bl_size.height = dk;

if (a_buf && is_a_t) {
_a_step = dk*elem_size;
GEMM_TransposeBlock(_a, A.step, a_buf, _a_step,

a_bl_size, elem_size);
std::swap(a_bl_size.width, a_bl_size.height);
_a = a_buf;

}

if (dj < d_size.width) {
Size b_size;
if(!is_b_t)
b_size.width = dj, b_size.height = dk;

else
b_size.width = dk, b_size.height = dj;

b_step = b_size.width*elem_size;
GEMM_CopyBlock(_b, b_step, b_buf, _b_step, b_size, elem_size);
b = b_buf;

}

if (dk0 < len) blockMulFunc(a, _a_step, _b, _b_step, _d, _d_step,
a_bl_size, Size(dj,di), flags);

else singleMulFunc(a, _a_step, _b, _b_step, _c, Cstep,
_ d, _d_step, a_bl_size, Size(dj,di), alpha, beta, flags);

flags |= 16;
}// for k

if(dk0 < len) {
storeFunc(_c, Cstep, _d, _d_step,

matD->data + i*matD->step + j*elem_size,
matD->step, Size(dj,di), alpha, beta, flags);

}
}// for j

[Fig. 9] An inner loop of function gemm(...) of
OpenCV[14]

A Code-level Parallelization Methodology to Enhance Interactivity of Smartphone Entertainment Applications

Journal of Digital Convergence❙ 387

class GEMM_BlockMul_Data
{
public:

// block indices and operation options
int i, j, flags;
// scalar values which will be multiplied to each matrix
double alpha, beta;
// pointes to input(operand) matrices and output(result) matrix
Mat *pA, *pB, *pC, *pD;
// the width and height of the result matrix
Size d_size;

// function pointers in accordance with input data precisions
// (32FC1 ~ 64FC2)
GEMMSingleMulFunc singleMulFunc;
GEMMBlockMulFunc blockMulFunc;
GEMMStoreFunc storeFunc;

// values for intermediate calculation
int is_a_t, is_b_t;
int len, elem_size;
int di, dj, dk, dk0;
int a_buf_size, b_buf_size, d_buf_size;
size_t a_step0, a_step1, b_step, b_step0, b_step1;
size_t c_step0, c_step1, Cstep, _d_step;

// pointes to input blocks and output block
const uchar *Cdata, *_c;
uchar *a_buf, *b_buf, *_d;

};

[Fig. 10] A thread data structure for a part of
function gemm(...)

A few notes on implementation are as follows. As

described above, dynamic memory allocation ought to

be avoided as many as possible since it degrades actual

performance. One alternative is global memory for

repetitive use of the same memory structure in series.

Instead of allocating new memory, the already-

allocated but now-invalid memory could be used to be

overwritten onto.

Although consecutive pieces of global memory,

which are actually arrays, are preferred as many as

possible, note that a chunk of global memory which has

compile-time non-zero default value directly affects the

footprint size of the output binary code.

In many cases, threaded functions need

proportionally more amounts of memory since each

thread procedure requires its own memory for

intermediate storage for computing. The available heap

size should be considered on the fly, especially on

mobile platforms. Therefore the efficient reuse of

dynamically allocated (heap/global) memory is critical

in case of dealing with big-size input/output data.

void* GEMM_BlockMul_ThreadProc(void *pData)
{
GEMM_BlockMul_Data* p = (GEMM_BlockMul_Data*)pData;

// This loop comes from the original as in [Fig. 9]
// The difference here is wrapping of input/output data
for (int k = 0; k < p->len; k += p->dk) {
const uchar* _a = p->pA->data + p->i*p->a_step0 + k*p->a_step1;
size_t _a_step = p->pA->step;
const uchar* _b = p->pB->data + k*p->b_step0 + p->j*p->b_step1;
size_t _b_step = p->b_step;
Size a_bl_size;

p->dk = p->dk0;
if (k + p->dk >= p->len || 8*(k + p->dk) + p->dk > 8*p->len)
p->dk = p->len - k;

if (!p->is_a_t)
a_bl_size.width = p->dk, a_bl_size.height = p->di;

else a_bl_size.width = p->di, a_bl_size.height = p->dk;

if (p->a_buf && p->is_a_t) {
_a_step = p->dk*p->elem_size;
GEMM_TransposeBlock(_a, p->pA->step, p->a_buf,

_a_step, a_bl_size, p->elem_size);
std::swap(a_bl_size.width, a_bl_size.height);
_a = p->a_buf;

}

if (p->dj < p->d_size.width) {
Size b_size;
if (!p->is_b_t) b_size.width = p->dj, b_size.height = p->dk;
else b_size.width = p->dk, b_size.height = p->dj;

_b_step = b_size.width*p->elem_size;
GEMM_CopyBlock(_b, p->b_step, p->b_buf,

_b_step, b_size, p->elem_size);
_b = p->b_buf;

}

if (p->dk0 < p->len) {
p->blockMulFunc(_a, _a_step, _b, _b_step, p->_d, p->_d_step,

a_bl_size, Size(p->dj,p->di), p->flags);
}
else {
p->singleMulFunc(_a, _a_step, _b, _b_step, p->_c, p->Cstep,

p->_d, p->_d_step, a_bl_size, Size(p->dj,p->di),
p->alpha, p->beta, p->flags);

}

// signal that, after this point,
// blockMulFunc() should accumulate the calc. results
p->flags |= 16;

} // for k

// clean up the thread’s own memory if needed
if (p->dk0 < p->len) {
p->storeFunc(p->_c, p->Cstep, p->_d, p->_d_step,

p->pD->data + p->i*p->pD->step + p->j*p->elem_size,
p->pD->step, Size(p->dj,p->di),
p->alpha, p->beta, p->flags);

free(p->_d);
p->_d = NULL;

}
if (p->is_a_t) {
free(p->a_buf);
p->a_buf = NULL;

}
if (p->dj < p->d_size.width) {
free(p->b_buf);
p->b_buf = NULL;

}

return pData;
}

[Fig. 11] A thread definition for a part of function
gemm(...)

스마트폰 엔터테인먼트 애플리케이션의 상호작용성 개선을 위한 코드 수준 병렬화 방법론

388 ❙Journal of Digital Convergence 2015 Dec; 13(12): 381-390

// Thread-2.1. set data for each thread
#define SetGEMM_BlockMul_Data(\

pThreadData, in__i, in__j, in__flags,\
in__A, in__B, in__C, in__D,\
in__alpha, in__beta, in__d_size, in__b_step,\
in__singleMulFunc, in__blockMulFunc, in__storeFunc,\
in__Cdata, in__Cstep, in__len,\
in__is_a_t, in__is_b_t, in__elem_size,\
in__a_buf_size, in__b_buf_size, in__d_buf_size,\
in__a_buf, in__b_buf, in__di, in__dj, in__dk, in__dk0,\
in__a_step0, in__a_step1, in__b_step0, in__b_step1,\
in__c_step0, in__c_step1, in___c, in___d, in___d_step) \
do {\

(pThreadData)->i = (in__i);\
(pThreadData)->j = (in__j);\
(pThreadData)->flags = (in__flags);\
(pThreadData)->pA = &(in__A);\
(pThreadData)->pB = &(in__B);\
(pThreadData)->pC = &(in__C);\
(pThreadData)->pD = &(in__D);\
(pThreadData)->alpha = (in__alpha);\
(pThreadData)->beta = (in__beta);\
(pThreadData)->d_size = (in__d_size);\
(pThreadData)->b_step = (in__b_step);\
(pThreadData)->singleMulFunc = (in__singleMulFunc);\
(pThreadData)->blockMulFunc = (in__blockMulFunc);\
(pThreadData)->storeFunc = (in__storeFunc);\
(pThreadData)->Cdata = (in__Cdata);\
(pThreadData)->Cstep = (in__Cstep);\
(pThreadData)->len = (in__len);\
(pThreadData)->is_a_t = (in__is_a_t);\
(pThreadData)->is_b_t = (in__is_b_t);\
(pThreadData)->elem_size = (in__elem_size);\
(pThreadData)->a_buf_size = (in__a_buf_size);\
(pThreadData)->b_buf_size = (in__b_buf_size);\
(pThreadData)->d_buf_size = (in__d_buf_size);\
if (in__is_a_t)\

(pThreadData)->a_buf =\
(uchar*)malloc(\

(in__a_buf_size) * sizeof((buf)[0]));\
else (pThreadData)->a_buf = (in__a_buf);\
if ((in__dj) < (in__d_size).width)\

(pThreadData)->b_buf =\
(uchar*)malloc(\

(in__b_buf_size) * sizeof((buf)[0]));\
else (pThreadData)->b_buf = (in__b_buf);\
(pThreadData)->di = (in__di);\
(pThreadData)->dj = (in__dj);\
(pThreadData)->dk = (in__dk);\
(pThreadData)->dk0 = (in__dk0);\
(pThreadData)->a_step0 = (in__a_step0);\
(pThreadData)->a_step1 = (in__a_step1);\
(pThreadData)->b_step0 = (in__b_step0);\
(pThreadData)->b_step1 = (in__b_step1);\
(pThreadData)->c_step0 = (in__c_step0);\
(pThreadData)->c_step1 = (in__c_step1);\
(pThreadData)->_c = (in___c);\
(pThreadData)->_d = (in___d);\
(pThreadData)->_d_step = (in___d_step);\

} while (0)

[Fig. 12] A macro function to fill a thread data
structure for function gemm_p(...)

Note that macro functions can be used to hide long

tedious jobs for data filling and thread waiting as in

[Fig. 12∼13], respectively. They are enclosed by ’do {}

while (0)’ so that they can be called as a normal

function at any point. A threaded version could be

shown in a neat form of a few lines as in [Fig. 14].

// Thread-2.5. inter-rim harvest to prevent an overflow

#define IntermediateWaitForGEMM_BlockMul_Threads() \

do {\

GEMM_BlockMul_Data *pResult;\

if (nThreads >= nMaxThreads) {\

if (iThread >= nMaxThreads)\

iThread = 0;\

pthread_join(aThreads[iThread], (void**)&pResult);\

if (pResult) {\

pResult = NULL;\

}\

nThreads--;\

}\

} while (0)

// Thread-3. harvest threads' result

#define FinalWaitForGEMM_BlockMul_Threads() \

do {\

GEMM_BlockMul_Data *pResult;\

if (nThreads >= nMaxThreads -1) {\

for (size_t tCount = 0; tCount < nMaxThreads; tCount++) {\

if (tCount == iThread) continue\

pthread_join(aThreads[tCount], (void**)&pResult);\

if (pResult) {\

pResult = NULL;\

}\

}\

}\

else if (nThreads > 0) {\

for (size_t tCount = 0; tCount < nMaxThreads; tCount++) {\

if (tCount == iThread) break\

pthread_join(aThreads[tCount], (void**)&pResult);\

if (pResult) {\

pResult = NULL;\

}\

}\

}\

iThread = nThreads = 0;\

} while(0)

[Fig. 13] A macro function to wait for a thread
for function gemm_p(...)

The implementation and test configuration are the

same as the one of the SIFT case. The first test is

conducted using a matrix-vector multiplication. From a

tens-by-tens matrix to a 600-by-600 one, there was no

meaningful performance difference. Above them, for

1600-by-1600 matrices, A, B, and C, (AB+tC) was

evaluated where t is a scalar constant. The processing

time was 14.3 sec. in average for the original and 4.5

sec. in average for a threaded version. The

improvement rate is about 317%. The number of

threads was specified as 20. In fact, 4 threads can be

operated simultaneously.

A Code-level Parallelization Methodology to Enhance Interactivity of Smartphone Entertainment Applications

Journal of Digital Convergence❙ 389

#define _GemmNumThreads_ 100
GEMM_BlockMul_Data aGEMM_BlockMul_Data[_GemmNumThreads_];

void gemm_p(InputArray matA, InputArray matB, double alpha,
InputArray matC, double beta, OutputArray _matD, int flags)

{
/* omitted before the last if-else statement */

// 3. a less severe case; we can simply multiply
if (/* omitted */) {/* omitted */}
// 4. the heaviest case; we should divide the matrices into blocks
else {
for (i = 0; i < d_size.height; i += di) {
di = dm0;
if (i + di >= d_size.height || 8*(i + di) + di > 8*d_size.height)
 di = d_size.height - i;

iThread = nThreads = 0;
for (j = 0; j < d_size.width; j += dj) {
uchar* _d = matD->data + i*matD->step + j*elem_size;
const uchar* _c = Cdata + i*c_step0 + j*c_step1;
size_t _d_step = matD->step;
dj = dn0;
if (j + dj >= d_size.width || 8*(j + dj) + dj > 8*d_size.width)
 dj = d_size.width - j;
flags &= 15;
if (dk0 < len) {
//_d = d_buf; // For thread-own memory allocation

// This will be freed in ThreadProc.
_d = (uchar*)malloc(d_buf_size * sizeof(buf[0]));
_d_step = dj*work_elem_size;

}

// Thread-2. distribute tasks among threads
GEMM_BlockMul_Data *pThreadData =

aGEMM_BlockMul_Data + iThread;

// Thread-2.1. set data for each thread
SetGEMM_BlockMul_Data(pThreadData,
i, j, flags, A, B, C, D, alpha, beta, d_size, b_step,
singleMulFunc, blockMulFunc, storeFunc,
Cdata, Cstep, len, is_a_t, is_b_t, elem_size,
a_buf_size, b_buf_size, d_buf_size, a_buf, b_buf,
di, dj, dk, dk0, a_step0, a_step1, b_step0, b_step1,
c_step0, c_step1, _c, _d, _d_step);

// Thread-2.2. create a thread
int rc = pthread_create(&aThreads[iThread++], NULL,

GEMM_BlockMul_ThreadProc, (void*)pThreadData);
nThreads++;

// Thread-2.5. inter-rim harvest to prevent an overflow
IntermediateWaitForGEMM_BlockMul_Threads();

}// for j
// Thread-3. harvest threads' result
FinalWaitForGEMM_BlockMul_Threads();

}// for i
}// else
/* omitted */

}

[Fig. 14] A multi-threaded version of function
gemm(...)

It is one of the most important factors in applying a

thread-based parallelization methodology since it

determines the performance gain[15]. Thus monitoring

and fine-tuning it on the fly are required to gain

non-fluctuating performance especially when the target

tasks could not be easily divided and distributed

equally to each thread.

4. Conclusion

In this paper, a code-level parallelization

methodology for mobile devices is proposed and

demonstrated.

The burden of algorithmic revision of a single-core

program to a multi-core one is alleviated by the

approach of code-level inspection and modification.

Thus it could enhance various real-world applications’

performance by fully utilizing the device’s parallel

architecture.

The limitation of the methodology is about the

overhead of calling, distributing and cleaning of thread

data. Those tasks make one main thread to nearly

dedicate itself to deal with them. Thus the maximum of

experimental gain is around 3x to 3.3x. The overhead

also increases battery usage compared to single-core

processing.

The future work is focused on the same code-level

enhancement of applications on the parallel architecture

such as SIMD(Single Instruction Multiple Data). In

practice, SIMD is popularly adopted for mobile devices

(e.g., ARM NEON™). An improved methodology

exploiting the SIMD capability is expected to

outperform the current one theoretically 3 to 4 times

faster since ARM NEON™ or Intel SSE generally

provide 4-lane multiple data for a single instruction.

REFERENCES

[1] G. Blake, R. G. Dreslinski and T. Mudge, "A Survey

of Multicore Processors," IEEE Signal Processing,

Vol. 26, No. 6, pp. 26-37, 2009.

[2] W. Wolf, "Multiprocessor System-on-Chip Technology",

IEEE Signal Processing, Vol. 26, No. 6, pp. 50-54,

2009.

[3] D. B. Skillicorn, “Architecture-Independent Parallel

Computation,” IEEE Computer, Vol. 23, No. 12, pp.

38-50, 1990.

스마트폰 엔터테인먼트 애플리케이션의 상호작용성 개선을 위한 코드 수준 병렬화 방법론

390 ❙Journal of Digital Convergence 2015 Dec; 13(12): 381-390

[4] M. Cole, "Algorithmic Skeletons: structured management

of parallel computations," MIT Press, 1989.

[5] J. Kepner and J. Lebak, "Software technologies for

high-performance parallel signal processing," Lincoln

Laboratory Journal, Vol. 14, no. 2, pp. 181-198, 2003.

[6] M. Leyton, J. M. Piquer. "Skandium: Multi-core

Programming with algorithmic skeletons", IEEE

Euro-micro PDP 2010.

[7] H. González-Vélez and M. Leyton, “A survey of

algorithmic skeleton frameworks: high-level structured

parallel programming enablers,” Software-Practice

& Experience, Vol. 40 No. 12, pp. 1135-1160, 2010.

[8] N. Khammassi et al. “MHPM: Multi-Scale Hybrid

Programming Model: A Flexible Parallelization

Methodology,” High Performance Computing and

Communication, pp. 71-80, 2012.

[9] M. Steuwer et al., “Generating performance portable

code using rewrite rules: from high-level functional

expressions to high-performance OpenCL code,”

Proc. of the 20th ACM SIGPLAN Int’l Conference

on Functional Programming, pp. 205-217, 2015.

[10] Intel Corporation. Threading Building Blocks,

Tutorial Rev. 1.6,

http://www.threadingbuildingblocks.org(Nov. 2015)

[11] J. Chong et al., “Efficient Parallelization of H.264

Decoding with Macro Block Level Scheduling,”

Proceedings of 2007 IEEE International Conference

on Multimedia and Expo, pp. 1874 - 1877, 2007.

[12] Rob Hess, “An Open-Source SIFT Library,”

Proceedings of the 18th ACM Int’l Conference on

Multimedia (MM'10), pp. 1493-1496, 2010.

[13] E. Anderson et al., “LAPACK Users' Guide (3rd

Ed.),” Philadelphia, PA: Society for Industrial and

Applied Mathematics, 1999.

[14] OpenCV GEMM (GEneralized Matrix Mult.),

https://github.com/Itseez/opencv/blob/master/modu

les/core/src/matmul.cpp

[15] A. Nicolau and A. Kejariwal, “How many threads

to spawn during program multithreading?” Proc. of

the 23rd international conference on Languages and

compilers for parallel computing, pp. 166-183, 2010.

김 병 철(Kim, Byung-Cheol)
․2002년 2월 : 아주대학교 정보 및

컴퓨터공학부(공학사)

․2004년 2월 : 한국과학기술원 전자

전산학과 전산학 전공(공학석사)

․2011년 8월 : 한국과학기술원 전산

학과(공학박사)

․2011년 9월 ～ 현재 : 서울대학교

정보문화학 전공 강사

․관심분야 : 가상현실, 컴퓨터그래픽스, 물리기반 시뮬레이션

․E-Mail : clorvie@gmail.com

