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Abstract  One of the fundamental requirements of entertainment applications is interactivity with users. The 
mobile device such as the smartphone, however, does not guarantee it due to the limit of the application 
processor’s computing power, memory size and available electric power of the battery. This paper proposes a 
methodology to boost responsiveness of interactive applications by taking advantage of the parallel architecture 
of mobile devices which, for instance, have dual-core, quad-core or octa-core. To harness the multi-core 
architecture, it exploits the POSIX thread, a platform-independent thread library to be able to be used in 
various mobile platforms such as Android, iOS, etc. As a useful application example of the methodology, a 
heavy matrix calculation function was transformed to a parallelized version which showed around 2.5 ~ 3 times 
faster than the original version in a real-world usage environment.
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요  약  스마트폰과 같은 이동형 장치들은 계산 성능이나 메모리 크기, 배터리 전력량 등의 한계로 인해 엔터테인먼
트 애플리케이션이 요구하는 상호작용성을 보장하기 어렵다. 이를 해결하기 위해 본 논문에서는 상호작용이 필수적
인 애플리케이션의 응답 속도를 개선할 수 있는 코드 수준 병렬화 방법론을 제안한다. 이 방법을 적용하면, 스마트
폰 등에서 제공하는 멀티코어 아키텍쳐를 바탕으로 기존 애플리케이션의 모노코어 알고리즘을 복잡한 재설계 없이 
코드 수준에서 병렬화 할 수 있다. 특히 플랫폼 독립적인 표준 쓰레드 라이브러리인 POSIX 쓰레드를 활용하면 안드
로이드나 iOS등의 다양한 스마트폰 플랫폼에서 본 방법론을 적용할 수 있다. 이의 효과적인 응용 사례로서 수백만 
개의 원소를 처리하는 행렬 연산 함수를 병렬화 해보았고 실사용 환경에서 약 3배가량의 성능 향상을 확인하였다.
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1. Introduction

This paper describes some strategies and associated 

techniques to boost the performance of compute- intensive 

mobile applications without algorithmic re-design. This 

assumes there is room for improvement beyond 

algorithms, that is, the parallel architecture of the 

computer.

Most general and popular ones of such parallel 

features are multiple computing cores(e.g., dual-core, 

quad-core, or octa-core)[1,2]. But revising of serial 

algorithms to parallel ones is complex task of agonizing 

pain. Thus various approaches and methodologies have 

been suggested to simplify the process[3,4,5,6,7,8,9]. 

The proposed methodology is to parallelize 

already-deployed algorithms at the code level.

Note that the target coding languages of concern are 

C and C++. More specifically, a language which has full 

access privileges to memory is required since 

parallelization means multiplexing on data manipulation. 

In that point, C/C++ are still the state-of-the-art 

languages.

2. Using POSIX Threads

In utilizing a multi-core system there are multi- 

process and multi-thread techniques. Practically, in 

most cases, the latter is preferred[10]. Besides the fact 

that a process is a relatively heavier structure than a 

thread, the critical point is in data sharing over 

processes or threads. IPC (Inter-Process Communication) 

is very costly and limited because of the nature of the 

process and, more importantly, system security. In 

contrast, inter-thread communication is a little bit 

trivial since all threads share the same memory space, 

that is, the memory addresses of one process.

The POSIX thread, so called pthread, is an 

inter-operable multi-threading technology as POSIX 

stands for Portable Operating System Interface. For 

example, source code which uses pthreads on a Linux 

can be migrated onto the MS Windows without any 

modification. It only needs re-compilation. Thus, in 

order to take advantage of portability over mobile 

platforms, multi-threading will be described based on 

POSIX threads.

2.1 Basic Procedure

A typical procedure to apply a multi-threading 

technique to existing compute-intensive code is as 

follows:

Specifying and isolating a compute-intensive block,

Defining a thread function for the block, and

Replacing the block with the thread function.

Next subsections will explain them in more detail.

2.1.1 Specifying and isolating a compute- 

intensive block

A compute-intensive block usually resides in a loop 

due to its nature. It might be a block of nested loops. 

To specify it is relatively easy because it must be one 

of the bottleneck points in the entire processing. In 

practice, we can track them down by examining the 

elapsed time of each computing block. Then, the 

outermost loop of the bottleneck block might be a 

driver of  threads, each computation content of which 

comes from one computation step of the loop. For 

example, the for loop with variable i in [Fig. 1] would 

be the thread-driving loop and its inner part including 

the nested loop would be the thread procedure like in 

[Fig. 3].

To isolate a computation block means separation of 

variables of all input, output, and intermediate data 

from outside the block. Such data isolation is also 

needed between loop steps. In other words, both input 

data into and output data from one step of the 

computing loop should be independent from another 

step’s. If not, each thread that comes from the step 

should be executed in order and that leads nothing but 

parallelization. 
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void Foo(float s[], float r[], float a[], float b[], float c[])

{// assumption: float s[100], r[9000], a[9000], b[9000], c[9000];

int i, j, q;

// This nesting loop is the block to replace

for (i = 0; i < 100; i++) {

s[i] = 0;

// This nested loop is compute-intensive

for (j = 0; j < 90; j++) {

q = i*90;

r[q+j] = a[q+j] - b[q+j] * c[q+j];

s[i] += r[q+j];

}

s[i] /= 90.0f;

}

}

[Fig. 1] A target code example. s and r are 
output while a, b, c are input.

In practice, all the related data should be collected 

and had better be wrapped in one memory structure 

such as struct or class as in [Fig. 2].

typedef struct {

float *pS, *pR;

float *pA, *pB, *pC;

} FooThreadData;

[Fig. 2] A wrapping structure for all the related
data in the block

2.1.2 Defining a thread function for the block

The definition of a pthread procedure basically 

comes from the code inside the loop. A meaningful 

difference is in that it uses its own data set separated 

from another thread’s. Thus, the procedure is declared 

with void pointers to input/output data to transport any 

kind of wrapped data at once as in [Fig. 3].

Note that the output of each thread task should be 

delivered to the caller using memory on heap or at least 

the caller’s stack, too. The caller’s main job is to collect 

the result of each thread and release the used memory 

if needed.

void* FooThreadProcedure(void *pData)

{

// Convert the input from void to a member-accessible pointer

FooThreadData *pTD = (FooThreadData*)pData;

// Convenience variables for code readability and writability

float s = 0, *r = pTD->pR;

float *a = pTD->pA, *b = pTD->pB, *c = pTD->pC;

int j;

// The compute-intensive loop

for (j = 0; j < 90; j++) {

r[j] = a[j] - b[j] * c[j];

s += r[j];

}

s /= 90.0f;

*(pTD->pS) = s;

return pData;

}

[Fig. 3] An example thread definition for the 
compute-intensive block in function 
Foo(...)

2.1.3 Replacing the block with the thread function

The final task is to substitute the target 

compute-intensive block with the defined thread 

function.

Each thread starts its own lifetime by detaching 

itself from the calling thread (e.g., function 

FooThreaded(...) in [Fig. 4]). It implies that the former 

cannot access the local memory(variables) in the 

latter’s scope any longer. Therefore, at the beginning 

inside the outermost loop, the wrapped data structure 

for a thread procedure must be created as a dynamic 

memory. Then, all the related data should be assigned 

onto it in accordance with each thread’s input coverage 

as of the comment ’Thread-2’ in [Fig. 4].

After setting the data, a thread is created using 

pthread_create(...) with it. At this point, the created 

thread will be executed independently from other 

threads including its caller. It goes on only until the 

given function (e.g., FooThreadProcedure(...)) ends. 

The caller can wait for a thread to finish and get the 

result using pthread_join(...) as of the comment 

’Thread-2.5’ and ’Thread-3’ in [Fig. 4].
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// the number of cores + alpha (considering overhead)
#define NumOfThreads 5

void FooThreaded(float s[], float r[],
    float a[], float b[], float c[])

{
// assumption: float s[100], r[9000], a[9000], b[9000], c[9000];

// Thread-1. declarations
size_t iThread=0, nThreads=0, nMaxThreads = NumOfThreads;
// STL’s vector could be used instead of a plain array
pthread_t aThreads[NumOfThreads];
// each thread’s own input/output data
FooThreadData *pData, *pResult = NULL;
int i, rc, tCount;

for (i = 0; i < 100; i++) {
// Thread-2. distribute tasks among threads
pData = new FooThreadData();
pData->pS = s + i;
pData->pR = r + i*90;
pData->pA = a + i*90;
pData->pB = b + i*90;
pData->pC = c + i*90;

// create a thread
rc = pthread_create(&aThreads[iThread++], NULL,

FooThreadProcedure, (void*)pData);
nThreads++;

// Thread-2.5. inter-rim harvest
//  to prevent an overflow of aThreads[]
if (nThreads >= nMaxThreads) {

if (iThread >= nMaxThreads)
iThread = 0;

// wait for the thread to finish
pthread_join(aThreads[iThread], (void**)&pResult);
if (pResult) {

/* collect and process on the result if needed */
delete pResult; // only if needed
pResult = NULL;

}
nThreads--;

}
}

// Thread-3. harvest threads' result

// should examine to the end of aThreads[]
if (nThreads >= nMaxThreads –1) {

for (tCount = 0; tCount < nMaxThreads; tCount++) {
// This equality means the cyclic reuse of the array
if (tCount == iThread) continue;
// wait for the thread to finish
pthread_join(aThreads[tCount], (void**)&pResult);
if (pResult) {

/* collect and process on the result if needed */
delete pResult; // only if needed
pResult = NULL;

}
}

}
// if there exist(s) unfinished thread(s)
else if (nThreads > 0) {

for (tCount = 0; tCount < nMaxThreads; tCount++) {
// This equality means the end of threading
if (tCount == iThread) break;
// wait for the thread to finish
pthread_join(aThreads[tCount], (void**)&pResult);
if (pResult) {

/* collect and process on the result if needed */
delete pResult; // only if needed
pResult = NULL;

}
}

}

// finally all cleared.
iThread = nThreads = 0;

}

[Fig. 4] A multi-threaded version of function 
Foo(...)

3. Case Studies

3.1 SIFT Descriptor Extraction

Robust feature extraction techniques like SIFT 

(Scale-Invariant Feature Transform) are getting an 

increasing focus  for mobile applications such as face 

detection/recognition, image-based search, and so on. 

Interactive use of such applications always requires 

maximum utilization of computing resources. Thus, it 

could be a target of parallelization discussed above.

A function shown in [Fig. 5] is one of the compute- 

intensive blocks in computing SIFT descriptors[12]. 

Since it has a typical structure of repetition of the same 

operations on a series of massive memory blocks, it 

could be easily transformed into a threaded version like 

[Fig. 6] and [Fig. 7].

/*

  Computes feature descriptors for features in an array.

  Based on Section 6 of Lowe's paper.

  @param features array of features

  @param gauss_pyr Gaussian scale space pyramid

  @param d width of 2D array of orientation histograms

  @param n number of bins per orientation histogram

*/

void compute_descriptors(CvSeq* features,

 IplImage*** gauss_pyr, int d, int n)

{

// The holder of main data

float*** hist;

struct feature* feat;

struct detection_data* ddata;

int i, k = features->total;

// For each feature

for (i = 0; i < k; i++) {

feat = CV_GET_SEQ_ELEM(struct feature, features, i);

ddata = feat_detection_data(feat);

// Evaluate orientation histograms

hist = descr_hist(gauss_pyr[ddata->octv][ddata->intvl],

 ddata->r, ddata->c, feat->ori, ddata->scl_octv, d, n);

// Convert the histograms to SIFT descriptors

hist_to_descr(hist, d, n, feat);

release_descr_hist(&hist, d);

}

}

[Fig. 5] A function to evaluate SIFT descriptors 
excerpted from ‘OpenSIFT’ [12]
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One point on which an attention should be given 

here is the line right below ’Thread-2’ comment line in 

[Fig. 9]. Instead of using new to prepare a thread- 

specific data memory, it uses an element of an array 

(aSIFTThreadData[]) which is declared as a global 

variable outside the function. It is because dynamic 

memory allocation imposes a non-negligible amount of 

tasks on the kernel. Thus it is ought to be employed as 

less as possible.

Note that the array is global which can be safely 

accessed to outside the function (e.g., in 

SIFTThreadProc()) as discussed in Section 2.1.3. And 

consequently, it is no longer required to release the 

allocated memory after each waiting for the end of a 

thread as ’//delete pResult;’ in this case.

class SIFTThreadData

{

public:

int d, n;

struct feature* feat;

IplImage*** gauss_pyr;

};

void* SIFTThreadProc(void *pData)

{

SIFTThreadData* p = (SIFTThreadData*)pData;

struct detection_data* ddata = feat_detection_data(p->feat);

// Evaluate orientation histograms

float*** hist = 

descr_hist(p->gauss_pyr[ddata->octv][ddata->intvl],

ddata->r, ddata->c, p->feat->ori,

ddata->scl_octv, p->d, p->n);

// Convert the histograms to SIFT descriptors

hist_to_descr(hist, p->d, p->n, p->feat);

release_descr_hist(&hist, p->d);

return pData;

}

[Fig. 6] A thread definition and its data structure
for function compute_descriptors(...)

The implementation was on Android 4.3 (Jellybean) 

and the performance test was conducted on Samsung 

Galaxy Note 3 of quad-core 2.3GHz application 

processor(AP). On the input image of 640x480 pixels, 

the original function was done in 1.8319 seconds while 

the parallel version was done in 0.6066 seconds, about 

3 times faster. Note that the specified number of 

threads did not make a big difference from 5 to 200.

#define _NumOfSIFTThreads_ 100
SIFTThreadData aSIFTThreadData[_NumOfSIFTThreads_];

void compute_descriptors_thr(CvSeq* features,
  IplImage*** gauss_pyr, int d, int n)

{
// Thread-1. declarations
typedef unsigned int size_t;
size_t iThread = 0, nThreads = 0;
size_t nMaxThreads = _NumOfSIFTThreads_;
pthread_t aThreads[_NumOfSIFTThreads_];
SIFTThreadData *pThreadData, *pResult = NULL;
int i, k = features->total;

for (i = 0; i < k; i++) {
// Thread-2. distribute tasks among threads
// We just use an array instead.
//pThreadData = new SIFTThreadData();
pThreadData = aSIFTThreadData + iThread;
pThreadData->d = d;
pThreadData->n = n;
pThreadData->gauss_pyr = gauss_pyr;
pThreadData->feat =

CV_GET_SEQ_ELEM(struct feature, features, i);

int rc = pthread_create(&aThreads[iThread++], NULL,
SIFTThreadProc, (void*)pThreadData);

nThreads++;

// Thread-2.5. inter-rim harvest to prevent an overflow
if (nThreads >= nMaxThreads) {

if (iThread >= nMaxThreads)
iThread = 0;

pthread_join(aThreads[iThread], (void**)&pResult);
if (pResult) {

// We just use an array instead.//delete pResult;
pResult = NULL;

}
nThreads--;

}
    }

// Thread-3. harvest threads' result
if (nThreads >= nMaxThreads -1) {

for (size_t tCount = 0; tCount < nMaxThreads; tCount++) {
if (tCount == iThread) continue
pthread_join(aThreads[tCount], (void**)&pResult);
if (pResult) {

// We just use an array instead.//delete pResult;
pResult = NULL;

}
}

}
else if (nThreads > 0) {

for (size_t tCount = 0; tCount < nMaxThreads; tCount++) {
if (tCount == iThread) break
pthread_join(aThreads[tCount], (void**)&pResult);
if (pResult) {

// We just use an array instead.//delete pResult;
pResult = NULL;

}
}

}
iThread = nThreads = 0;

}

[Fig. 7] A multi-threaded function compute_ 
descriptors(...)
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3.2 Matrix Calculation

The high-resolution image/video processing such as 

H.264 decoding needs a performance boost utilizing the 

parallel architecture[11]. Handling such big images also 

involves calculations of matrices of huge dimensions. 

Thus operations on matrices could be another 

compute-intensive example in the real world.

In practice, there are several implementations which 

can deal with big matrix operations like matrix 

multiplication, transpose, inverse calculation, etc. A 

popular one of them[13] is GEMM(GEneralized Matrix 

Multiplication) of OpenCV(Open Computer Vision 

Library)[14]. As lots of vision or AR(Augmented 

Reality) applications take advantage of OpenCV, its 

embedded GEMM is getting popular too.

Therefore the OpenCV GEMM function is chosen to 

be transformed using the proposed methodology. At a 

glimpse, it looks much more complex than the previous 

example, i.e., SIFT. But its skeleton is concise as 

described in [Fig. 8∼9].

void gemm(InputArray matA, InputArray matB, double alpha,
   InputArray matC, double beta, OutputArray _matD, int flags)

{
const int block_lin_size = 128;
const int block_size = block_lin_size * block_lin_size;
/* omitted */
// 1. if trivial(~4x4 matrices), just calculate right here
/* omitted */
// 2. not trivial, indeed. further analysis required.
/* omitted before the last if-else statement */

// 3. a less severe case; we can simply multiply
if (((d_size.height <= block_lin_size/2 ||

 d_size.width <= block_lin_size/2) &&
len <= 10000) || len <= 10 ||
(d_size.width <= block_lin_size &&
 d_size.height <= block_lin_size && len <= block_lin_size) ) {
singleMulFunc( A.data, A.step, B.data, b_step, Cdata, Cstep,
matD->data, matD->step, a_size, d_size, alpha, beta, flags );

}
// 4. the heaviest case; we should divide the matrices
//     into blocks and multiply with them
else {
for (i = 0; i < d_size.height; i += di) {
di = dm0;
if (i + di >= d_size.height || 8*(i + di) + di > 8*d_size.height)
    di = d_size.height - i;

iThread = nThreads = 0;

/* The part here is in [Fig. 9] due to the size of this text box */

}// for i
}// else
/* omitted */

}

[Fig. 8] An example function of generalized 
matrix multiplication excerpted from 
function gemm(...) of OpenCV[14]

It is well organized thus powerful enough to 

efficiently handle from very small matrices of like 

2-by-2 to huge matrices of millions-by-millions. It 

classifies the ranks of input matrices into several 

categories and then accordingly calculate with them. In 

the heaviest case, it divides input matrices into 

sub-blocks (e.g., 128-by-128) and calculate them one 

by one. That could be transformed into a 

multi-threaded form as in [Fig. 10∼14]. Note that 

another part such as singleMulFunc(...) function is also 

one of the good targets to transform. 

for (j = 0; j < d_size.width; j += dj ) {
uchar* _d = matD->data + i*matD->step + j*elem_size;
const uchar* _c = Cdata + i*c_step0 + j*c_step1;
size_t _d_step = matD->step;
dj = dn0;
if (j + dj >= d_size.width || 8*(j + dj) + dj > 8*d_size.width)
    dj = d_size.width - j;
flags &= 15;
if (dk0 < len) {
_d = d_buf;
_d_step = dj*work_elem_size;

}
// This loop is a compute-intensive block to replace
for (k = 0; k < len; k += dk ) {
const uchar* _a = A.data + i*a_step0 + k*a_step1;
size_t _a_step = A.step;
const uchar* _b = B.data + k*b_step0 + j*b_step1;
size_t _b_step = b_step;
Size a_bl_size;

dk = dk0;
if (k + dk >= len || 8*(k + dk) + dk > 8*len)
dk = len - k;

if (!is_a_t )
a_bl_size.width = dk, a_bl_size.height = di;

else
a_bl_size.width = di, a_bl_size.height = dk;

if (a_buf && is_a_t ) {
_a_step = dk*elem_size;
GEMM_TransposeBlock(_a, A.step, a_buf, _a_step,

a_bl_size, elem_size);
std::swap( a_bl_size.width, a_bl_size.height );
_a = a_buf;

}

if (dj < d_size.width) {
Size b_size;
if( !is_b_t )
b_size.width = dj, b_size.height = dk;

else
b_size.width = dk, b_size.height = dj;

b_step = b_size.width*elem_size;
GEMM_CopyBlock(_b, b_step, b_buf, _b_step, b_size, elem_size);
b = b_buf;

}

if (dk0 < len) blockMulFunc(a, _a_step, _b, _b_step, _d, _d_step,
a_bl_size, Size(dj,di), flags);

else singleMulFunc(a, _a_step, _b, _b_step, _c, Cstep,
_ d, _d_step, a_bl_size, Size(dj,di), alpha, beta, flags);

flags |= 16;
}// for k

if( dk0 < len ) {
storeFunc(_c, Cstep, _d, _d_step,

matD->data + i*matD->step + j*elem_size,
matD->step, Size(dj,di), alpha, beta, flags);

}
}// for j

[Fig. 9] An inner loop of function gemm(...) of 
OpenCV[14]
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class GEMM_BlockMul_Data
{
public:

// block indices and operation options
int i, j, flags;
// scalar values which will be multiplied to each matrix
double alpha, beta;
// pointes to input(operand) matrices and output(result) matrix
Mat *pA, *pB, *pC, *pD;
// the width and height of the result matrix
Size d_size;

// function pointers in accordance with input data precisions 
// (32FC1 ~ 64FC2)
GEMMSingleMulFunc singleMulFunc;
GEMMBlockMulFunc blockMulFunc;
GEMMStoreFunc storeFunc;

// values for intermediate calculation
int is_a_t, is_b_t;
int len, elem_size;
int di, dj, dk, dk0;
int a_buf_size, b_buf_size, d_buf_size;
size_t a_step0, a_step1, b_step, b_step0, b_step1;
size_t c_step0, c_step1, Cstep, _d_step;

// pointes to input blocks and output block
const uchar *Cdata, *_c;
uchar *a_buf, *b_buf, *_d;

};

[Fig. 10] A thread data structure for a part of 
function gemm(...)

A few notes on implementation are as follows. As 

described above, dynamic memory allocation ought to 

be avoided as many as possible since it degrades actual 

performance. One alternative is global memory for 

repetitive use of the same memory structure in series. 

Instead of allocating new memory, the already- 

allocated but now-invalid memory could be used to be 

overwritten onto.

Although consecutive pieces of global memory, 

which are actually arrays, are preferred as many as 

possible, note that a chunk of global memory which has 

compile-time non-zero default value directly affects the 

footprint size of the output binary code.

In many cases, threaded functions need 

proportionally more amounts of memory since each 

thread procedure requires its own memory for 

intermediate storage for computing. The available heap 

size should be considered on the fly, especially on 

mobile platforms. Therefore the efficient reuse of 

dynamically allocated (heap/global) memory is critical 

in case of dealing with big-size input/output data.

void* GEMM_BlockMul_ThreadProc(void *pData)
{
GEMM_BlockMul_Data* p = (GEMM_BlockMul_Data*)pData;

// This loop comes from the original as in [Fig. 9]
// The difference here is wrapping of input/output data
for (int k = 0; k < p->len; k += p->dk) {
const uchar* _a = p->pA->data + p->i*p->a_step0 + k*p->a_step1;
size_t _a_step = p->pA->step;
const uchar* _b = p->pB->data + k*p->b_step0 + p->j*p->b_step1;
size_t _b_step = p->b_step;
Size a_bl_size;

p->dk = p->dk0;
if (k + p->dk >= p->len || 8*(k + p->dk) + p->dk > 8*p->len)
p->dk = p->len - k;

if (!p->is_a_t)
a_bl_size.width = p->dk, a_bl_size.height = p->di;

else a_bl_size.width = p->di, a_bl_size.height = p->dk;

if (p->a_buf && p->is_a_t) {
_a_step = p->dk*p->elem_size;
GEMM_TransposeBlock(_a, p->pA->step, p->a_buf,

_a_step, a_bl_size, p->elem_size);
std::swap(a_bl_size.width, a_bl_size.height);
_a = p->a_buf;

}

if (p->dj < p->d_size.width) {
Size b_size;
if (!p->is_b_t) b_size.width = p->dj, b_size.height = p->dk;
else b_size.width = p->dk, b_size.height = p->dj;

_b_step = b_size.width*p->elem_size;
GEMM_CopyBlock( _b, p->b_step, p->b_buf,

_b_step, b_size, p->elem_size );
_b = p->b_buf;

}

if (p->dk0 < p->len) {
p->blockMulFunc(_a, _a_step, _b, _b_step, p->_d, p->_d_step,

a_bl_size, Size(p->dj,p->di), p->flags);
}
else {
p->singleMulFunc(_a, _a_step, _b, _b_step, p->_c, p->Cstep,

p->_d, p->_d_step, a_bl_size, Size(p->dj,p->di),
p->alpha, p->beta, p->flags);

}

// signal that, after this point,
//  blockMulFunc() should accumulate the calc. results
p->flags |= 16;

} // for k

// clean up the thread’s own memory if needed
if (p->dk0 < p->len) {
p->storeFunc(p->_c, p->Cstep, p->_d, p->_d_step,

p->pD->data + p->i*p->pD->step + p->j*p->elem_size,
p->pD->step, Size(p->dj,p->di),
p->alpha, p->beta, p->flags);

free(p->_d);
p->_d = NULL;

}
if (p->is_a_t) {
free(p->a_buf);
p->a_buf = NULL;

}
if (p->dj < p->d_size.width) {
free(p->b_buf);
p->b_buf = NULL;

}

return pData;
}

[Fig. 11] A thread definition for a part of function
gemm(...)
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// Thread-2.1. set data for each thread
#define SetGEMM_BlockMul_Data(\

pThreadData, in__i, in__j, in__flags,\
in__A, in__B, in__C, in__D,\
in__alpha, in__beta, in__d_size, in__b_step,\
in__singleMulFunc, in__blockMulFunc, in__storeFunc,\
in__Cdata, in__Cstep, in__len,\
in__is_a_t, in__is_b_t, in__elem_size,\
in__a_buf_size, in__b_buf_size, in__d_buf_size,\
in__a_buf, in__b_buf, in__di, in__dj, in__dk, in__dk0,\
in__a_step0, in__a_step1, in__b_step0, in__b_step1,\
in__c_step0, in__c_step1, in___c, in___d, in___d_step) \
do {\

(pThreadData)->i = (in__i);\
(pThreadData)->j = (in__j);\
(pThreadData)->flags = (in__flags);\
(pThreadData)->pA = &(in__A);\
(pThreadData)->pB = &(in__B);\
(pThreadData)->pC = &(in__C);\
(pThreadData)->pD = &(in__D);\
(pThreadData)->alpha = (in__alpha);\
(pThreadData)->beta = (in__beta);\
(pThreadData)->d_size = (in__d_size);\
(pThreadData)->b_step = (in__b_step);\
(pThreadData)->singleMulFunc = (in__singleMulFunc);\
(pThreadData)->blockMulFunc = (in__blockMulFunc);\
(pThreadData)->storeFunc = (in__storeFunc);\
(pThreadData)->Cdata = (in__Cdata);\
(pThreadData)->Cstep = (in__Cstep);\
(pThreadData)->len = (in__len);\
(pThreadData)->is_a_t = (in__is_a_t);\
(pThreadData)->is_b_t = (in__is_b_t);\
(pThreadData)->elem_size = (in__elem_size);\
(pThreadData)->a_buf_size = (in__a_buf_size);\
(pThreadData)->b_buf_size = (in__b_buf_size);\
(pThreadData)->d_buf_size = (in__d_buf_size);\
if (in__is_a_t)\

(pThreadData)->a_buf =\
(uchar*)malloc(\

(in__a_buf_size) * sizeof((buf)[0]));\
else (pThreadData)->a_buf = (in__a_buf);\
if ((in__dj) < (in__d_size).width)\

(pThreadData)->b_buf =\
(uchar*)malloc(\

(in__b_buf_size) * sizeof((buf)[0]));\
else (pThreadData)->b_buf = (in__b_buf);\
(pThreadData)->di = (in__di);\
(pThreadData)->dj = (in__dj);\
(pThreadData)->dk = (in__dk);\
(pThreadData)->dk0 = (in__dk0);\
(pThreadData)->a_step0 = (in__a_step0);\
(pThreadData)->a_step1 = (in__a_step1);\
(pThreadData)->b_step0 = (in__b_step0);\
(pThreadData)->b_step1 = (in__b_step1);\
(pThreadData)->c_step0 = (in__c_step0);\
(pThreadData)->c_step1 = (in__c_step1);\
(pThreadData)->_c = (in___c);\
(pThreadData)->_d = (in___d);\
(pThreadData)->_d_step = (in___d_step);\

} while (0)

[Fig. 12] A macro function to fill a thread data 
structure for function gemm_p(...)

Note that macro functions can be used to hide long 

tedious jobs for data filling and thread waiting as in 

[Fig. 12∼13], respectively. They are enclosed by ’do {} 

while (0)’ so that they can be called as a normal 

function at any point. A threaded version could be 

shown in a neat form of a few lines as in [Fig. 14].

// Thread-2.5. inter-rim harvest to prevent an overflow

#define IntermediateWaitForGEMM_BlockMul_Threads() \

do {\

GEMM_BlockMul_Data *pResult;\

if (nThreads >= nMaxThreads) {\

if (iThread >= nMaxThreads)\

iThread = 0;\

pthread_join(aThreads[iThread], (void**)&pResult);\

if (pResult) {\

pResult = NULL;\

}\

nThreads--;\

}\

} while (0)

// Thread-3. harvest threads' result

#define FinalWaitForGEMM_BlockMul_Threads() \

do {\

GEMM_BlockMul_Data *pResult;\

if (nThreads >= nMaxThreads -1) {\

for (size_t tCount = 0; tCount < nMaxThreads; tCount++) {\

if (tCount == iThread) continue\

pthread_join(aThreads[tCount], (void**)&pResult);\

if (pResult) {\

pResult = NULL;\

}\

}\

}\

else if (nThreads > 0) {\

for (size_t tCount = 0; tCount < nMaxThreads; tCount++) {\

if (tCount == iThread) break\

pthread_join(aThreads[tCount], (void**)&pResult);\

if (pResult) {\

pResult = NULL;\

}\

}\

}\

iThread = nThreads = 0;\

} while(0)

[Fig. 13] A macro function to wait for a thread 
for function gemm_p(...)

The implementation and test configuration are the 

same as the one of the SIFT case. The first test is 

conducted using a matrix-vector multiplication. From a 

tens-by-tens matrix to a 600-by-600 one, there was no 

meaningful performance difference. Above them, for 

1600-by-1600 matrices, A, B, and C, (AB+tC) was 

evaluated where t is a scalar constant. The processing 

time was 14.3 sec. in average for the original and 4.5 

sec. in average for a threaded version. The 

improvement rate is about 317%. The number of 

threads was specified as 20. In fact, 4 threads can be 

operated simultaneously.
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#define _GemmNumThreads_ 100
GEMM_BlockMul_Data aGEMM_BlockMul_Data[_GemmNumThreads_];

void gemm_p(InputArray matA, InputArray matB, double alpha,
InputArray matC, double beta, OutputArray _matD, int flags)

{
/* omitted before the last if-else statement */

// 3. a less severe case; we can simply multiply
if (/* omitted */) {/* omitted */}
// 4. the heaviest case; we should divide the matrices into blocks
else {
for (i = 0; i < d_size.height; i += di) {
di = dm0;
if (i + di >= d_size.height || 8*(i + di) + di > 8*d_size.height)
    di = d_size.height - i;

iThread = nThreads = 0;
for (j = 0; j < d_size.width; j += dj ) {
uchar* _d = matD->data + i*matD->step + j*elem_size;
const uchar* _c = Cdata + i*c_step0 + j*c_step1;
size_t _d_step = matD->step;
dj = dn0;
if (j + dj >= d_size.width || 8*(j + dj) + dj > 8*d_size.width)
    dj = d_size.width - j;
flags &= 15;
if (dk0 < len) {
//_d = d_buf; // For thread-own memory allocation

// This will be freed in ThreadProc.
_d = (uchar*)malloc(d_buf_size * sizeof(buf[0]));
_d_step = dj*work_elem_size;

}

// Thread-2. distribute tasks among threads
GEMM_BlockMul_Data *pThreadData =

aGEMM_BlockMul_Data + iThread;

// Thread-2.1. set data for each thread
SetGEMM_BlockMul_Data(pThreadData,
i, j, flags, A, B, C, D, alpha, beta, d_size, b_step,
singleMulFunc, blockMulFunc, storeFunc,
Cdata, Cstep, len, is_a_t, is_b_t, elem_size,
a_buf_size, b_buf_size, d_buf_size, a_buf, b_buf,
di, dj, dk, dk0, a_step0, a_step1, b_step0, b_step1,
c_step0, c_step1, _c, _d, _d_step);

// Thread-2.2. create a thread
int rc = pthread_create(&aThreads[iThread++], NULL,

GEMM_BlockMul_ThreadProc, (void*)pThreadData);
nThreads++;

// Thread-2.5. inter-rim harvest to prevent an overflow
IntermediateWaitForGEMM_BlockMul_Threads();

}// for j
// Thread-3. harvest threads' result
FinalWaitForGEMM_BlockMul_Threads();

}// for i
}// else
/* omitted */

}

[Fig. 14] A multi-threaded version of function 
gemm(...)

It is one of the most important factors in applying a 

thread-based parallelization methodology since it 

determines the performance gain[15]. Thus monitoring 

and fine-tuning it on the fly are required to gain 

non-fluctuating performance especially when the target 

tasks could not be easily divided and distributed 

equally to each thread.

4. Conclusion

In this paper, a code-level parallelization 

methodology for mobile devices is proposed and 

demonstrated.

The burden of algorithmic revision of a single-core 

program to a multi-core one is alleviated by the 

approach of code-level inspection and modification. 

Thus it could enhance various real-world applications’ 

performance by fully utilizing the device’s parallel 

architecture.

The limitation of the methodology is about the 

overhead of calling, distributing and cleaning of thread 

data. Those tasks make one main thread to nearly 

dedicate itself to deal with them. Thus the maximum of 

experimental gain is around 3x to 3.3x. The overhead 

also increases battery usage compared to single-core 

processing.

The future work is focused on the same code-level 

enhancement of applications on the parallel architecture 

such as SIMD(Single Instruction Multiple Data). In 

practice, SIMD is popularly adopted for mobile devices 

(e.g., ARM NEON™). An improved methodology 

exploiting the SIMD capability is expected to 

outperform the current one theoretically 3 to 4 times 

faster since ARM NEON™ or Intel SSE generally 

provide 4-lane multiple data for a single instruction.
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