• Title/Summary/Keyword: Battery management system

Search Result 418, Processing Time 0.033 seconds

Development of Battery Management System for Electric Vehicle Applications of Ni/MH Battery

  • Jung Do Yang;Lee Baek Haeng;Kim Sun Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.152-159
    • /
    • 2001
  • Electric vehicle performance is very dependent on traction batteries. For developing the electric vehicles with high performance and good reliability, the traction batteries have to be managed to get maximum performance under various operating conditions. The enhancement of the battery performance can be accomplished by implementing battery management system (BMS) that plays important roles of optimizing the control mechanism of charge and discharge of the batteries as well as monitoring battery status. In this study the battery management system has been developed for maximizing the use of Ni/MH batteries in electric vehicle. This system provides several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state of charge, safety and thermal management. The BMS was installed in and tested using the DEV5-5 electric vehicle developed by Daewoo Motor Co. and Institute for Advanced Engineering in Korea. The 18 modules of Panasonic Ni/MH battery, 12 V-95 Ah, were used in the DEV5-5. The high accuracy within the range of $3\%$ and the good reliability were shown in the test results. The BMS can also improve the performance and cycle life of Ni/MH battery pack as well as the reliability and safety of the electric vehicles (EV).

Development of hybrid system with fuel cell and lithium secondary battery (연료전지와 리튬 이차전지의 하이브리드 시스템 개발)

  • Hwang, Sangmoon;Jung, Eunmi;Son, Dongun;Shim, Taehee;Song, Hayoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.143.2-143.2
    • /
    • 2010
  • Therefore, with this development assignment we'd like to develop the hybrid system combining 800W DMFC (Direct Methanol Fuel Cell) and 1.6kW of Lithium secondary battery pack which can be applied to the most common small cart. a scooter, to secure the development capability of hundreds of Watts DMFC, the high-capacity Lithium secondary battery pack, the technology of BMS (Battery Management System) and the development technology of hybrid system. DMFC, in fact, has lower energy efficiency than PEMFC (Polymer Electrolyte Membrane Fuel Cell); however, it has several advantages in terms of fuel storage and use. It is pretty easy to be stored and used without any additional colling and heating devices because of its insensitive liquid methanol to temperature. In conclusion, DMFC system is the most suitable device for small mobile vehicles.

  • PDF

Modeling of 36V lead acid battery for 42V system simulation (42V 시스템 시뮬레이션을 위한 36V 납축전지 모델링)

  • Yun Han-Seok;Lee Jea-Ho;Cho Bo-Hyung
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1525-1527
    • /
    • 2004
  • Modeling of the battery for 42V Power-Net system is presented. For the Battery Management System(BMS) algorithm in a Mildhybrid vehicle, accuracy in SOC estimation is crucial. The battery model is needed for the BMS algorithm as well as system computer symulation for the energy management. The battery model was composed of impedance elements and the each element of the model is estimated by the analysis of the terminal voltage. The result of the model is confirmed by experimental data.

  • PDF

The Core Technical Trends of TESLA EV(Electric Vehicle) Motors (테슬라(TESLA) 전기자동차 핵심 기술동향)

  • Bae, Jin-Yong;Kim, Yong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.414-422
    • /
    • 2017
  • This paper reviews the core technical trends of TESLA EV Motors. The TESLA EV Motors is explosively popular with a considerable recharging infrastructure, a wide 17-[inch] touch display, 417 [HP], and 378 [km] going distance. The object of this study analyzes the body appearance, motor and, battery cooling system, battery arrangement, battery management system, super charging station, power electronics, and induction motor.

Space Qualification of Small Satellite Li-ion Battery System for the Secured Reliability (소형인공위성용 리튬이온 배터리시스템의 신뢰성 확보을 위한 우주인증시험)

  • Park, Kyung-Hwa;Yi, Kang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.351-359
    • /
    • 2014
  • This paper introduces the lithium ion battery system for LEO(Low Earth Orbit) small satellites. This study proves the reliability of lithium ion batteries applying to the space application. The specifications for lithium ion battery unit are proposed to supply power to the satellite and the overall mechanical design including structural simulation to confirm the reliability of the lithium ion BMS(Battery Management System) under the space environment and launching conditions. The results of structural simulation, functional tests, and space environmental tests show the lithium ion battery system is space qualified. Space qualification of the small satellite battery system to secure reliability of BMS and lithium ion batteries lend credibility for using lithium ion batteries in space application.

Development of Secondary Battery Module Cooling System Technology for Fast Charging (고속 충전을 위한 이차전지모듈 냉각시스템 기술 개발)

  • Kang, Seok Jun;Kim, Miju;Sung, Donggil;Oh, Miyoung;Bae, Joonsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Because high power with large size cell is used for the battery pack of hybrid electric vehicles and electric vehicles (HEV and EV), average temperature in a battery cell is the important criteria of the thermal management of the battery pack. Furthermore, fast charging technology is required to reduce battery charging time. Since battery pack performance and lifespan are deteriorated due to the heat of cells and electronic components caused by fast charging, an effective cooling system is required to reduce performance deterioration. In this study, a cooling system and module design applied to a pouch-type for fast charging battery cell are investigated, and the cooling performance that can maximize the efficiency of the battery was analyzed. The result shows that the vapor chamber cooling system has better cooling performance, the temperature drop in the module was 5.82 ℃ compared with aluminum cooling plates.

A Study on Development of BMS module Algorithm for Bluetooth-based Lithium-Iron Phosphate Battery pack (블루투스 기반 리튬인산철 배터리팩을 위한 BMS 모듈 알고리즘 개발에 관한 연구)

  • Kim, Jong-Min;Ryu, Gab-Sang
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • Currently, lithium-ion batteries are mainly used in energy storage equipment products including automobiles. This can be exposed to dangerous situations such as explosions in the event of incorrect battery management conditions that are overcharged or left in high temperature conditions. It also causes a situation battery cannot be used when it has been over discharged. Therefore, a system that manages the state of the battery is required. The battery management system aims to obtain optimum battery efficiency by accurately recognizing the state of the battery and keeping the voltage of each cell constant. In this paper, we develop a lithium-iron phosphate battery that has higher safety than a general lithium-ion battery. Then, in order to manage this, we try to develop the algorithm of the BMS module based on the Bluetooth communication using the MATLAB-SIMULINK.

Development of ESS Based on VRFB-LFPB Hybrid Batteries (VRFB-LFPB 하이브리드 배터리 기반의 ESS 개발에 관한 연구)

  • Cheon, Young Sik;Park, Jin Soo;You, Jinho;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • High-power lithium batteries are suitable for equipment with high power output needs, such as for ESS's initial start-up. However, their management cost is increased by the installation of air-conditioning to minimize the risk of explosion due to internal temperature rise and also by a restriction on the number of charge/discharge cycles. High-capacity flow batteries, on the other hand, have many advantages. They can be used for over 20 years due to their low management costs, resulting from no risk of explosion and a high number of charge/discharge cycles. In this paper, we propose an ESS based on hybrid batteries that uses a lithium iron phosphate battery (LiFePO) at the initial startup and a vanadium redox flow battery (VRFB) from the end of the transient period, with a bi-directional PCS to operate two batteries with different DC voltage levels and using an efficient energy management control algorithm.