• 제목/요약/키워드: Battery energy storage

검색결과 755건 처리시간 0.023초

FPGA를 이용한 소형 태양광 발전 니켈 수소 전지 충전 시스템의 POS MPPT 제어 (FPGA based POS MPPT Control for a Small Scale Charging System of PV-nickel Metal Hydride Battery)

  • 이효근;서효룡;김경훈;박민원;유인근
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.80-84
    • /
    • 2012
  • Recently, the small scale photovoltaic (PV) electronic devices are drawing attention as the upcoming PV generation system. The PV system is commonly used in small scale PV applications such as LED lighting and cell phone. This paper proposes photovoltaic output sensorless (POS) maximum power point tracking (MPPT) control for a small scale charging system of PV-nickel metal hydride battery using field-programmable gate array (FPGA) controller. A converter is connected to a small scale PV cell and battery, and performs the POS MPPT at the battery terminal current instead of being at the PV cell output voltage and current. The FPGA controller and converter operate based on POS MPPT method. The experimental results show that the nickel metal hydride battery is charged by the maximum PV output power.

Solar Energy Powered Bicycle for Wireless Supervisory Control and Remote Power Management Applications

  • Chao, Chung-Hsing
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.111-115
    • /
    • 2012
  • In this paper, a solar energy powered bicycle linked to a wireless sensor network (WSN) which monitors the transfer of solar energy to an electrical energy storage unit and an analysis of its effectiveness is proposed. In order to achieve this goal, a solar-powered bicycle with an attached ZigBee and a far-end wireless network supervisory system is setup. Experimental results prove that our prototype, solar energy powered bicycle, can achieve enough solar energy for charging a two lead-acid battery pack. As a result, the user, through use of a wireless network in the parking period can be kept aware of the data on the amount of immediate solar radiation, the degree of illumination, the ambient temperature, and electrical energy storage capacity information of the bicycle through an internet interface.

바나듐계 레독스 흐름 전지용 고분자 이온교환막의 연구개발 동향 (Research Trend of Polymeric Ion-Exchange Membrane for Vanadium Redox Flow Battery)

  • 김득주;남상용
    • 멤브레인
    • /
    • 제22권5호
    • /
    • pp.285-300
    • /
    • 2012
  • 바나듐 흐름전지는 오랜 사이클 수명, 높은 에너지효율, 낮은 제조단가 그리고 친환경성으로 인하여 에너지저장장치의 한 부분이 될 것으로 기대되고 있다. 바나듐 흐름전지 시스템의 핵심 부품의 하나로서 이온교환막은 이온이 계속적으로 전달되는 동안 양극과 음극 전해질의 투과를 저해하는 물성이 요구된다. 그러나 Nafion과 같은 이온교환막은 넓은 시장성의 확보를 위한 목표성능의 달성을 위한 몇가지 과제들에 직면하고 있다. 그러므로 이러한 문제들을 해결하기 위하여 최근까지 개발된 여러가지 이온교환막에 대하여 Nafion과 비교하여 바나듐 흐름전지특성에 대하여 조사하였다.

VRFB-LFPB 하이브리드 배터리 기반의 ESS 개발에 관한 연구 (Development of ESS Based on VRFB-LFPB Hybrid Batteries)

  • 천영식;박진수;유진호;이진
    • 한국전기전자재료학회논문지
    • /
    • 제31권1호
    • /
    • pp.61-67
    • /
    • 2018
  • High-power lithium batteries are suitable for equipment with high power output needs, such as for ESS's initial start-up. However, their management cost is increased by the installation of air-conditioning to minimize the risk of explosion due to internal temperature rise and also by a restriction on the number of charge/discharge cycles. High-capacity flow batteries, on the other hand, have many advantages. They can be used for over 20 years due to their low management costs, resulting from no risk of explosion and a high number of charge/discharge cycles. In this paper, we propose an ESS based on hybrid batteries that uses a lithium iron phosphate battery (LiFePO) at the initial startup and a vanadium redox flow battery (VRFB) from the end of the transient period, with a bi-directional PCS to operate two batteries with different DC voltage levels and using an efficient energy management control algorithm.

주택용 단상 ESS-PCS의 전압손실과 직류링크 맥동을 고려한 직류측 배터리 사이즈 및 제어기 설계 (Design of DC Battery Size & Controller for Household Single-Phase ESS-PCS Considering Voltage Drop and DC Link Voltage Ripple)

  • 김용중;이진성;김효성
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.94-100
    • /
    • 2018
  • Generally, in a single-phase energy storage system (ESS) for households, AC ripple component with twice the fundamental frequency exists inevitably in the DC link voltage of single-phase PCS. In the grid-connected mode of a single-phase inverter, the AC ripple component in the DC link voltage causes low-order harmonics on grid-side current that deteriorates power quality on an AC grid. In this work, a control system adopting a feedforward controller is established to eliminate the AC ripple interference on the DC link side. Optimal battery nominal voltage design method is also proposed by considering the voltage loss and AC ripple voltage on DC link side in a single-phase ESS. Finally, the control system and battery nominal voltage design method are verified through simulations and experiments.

Development of LED Street Lighting Controller for Wind-Solar Hybrid Power System

  • Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1643-1653
    • /
    • 2014
  • This paper presents the design and implementation of a wind-solar hybrid power system for LED street lighting and an isolated power system. The proposed system consists of photovoltaic modules, a wind generator, a storage system (battery), LED lighting, and the controller, which can manage the power and system operation. This controller has the functions of maximum power point tracking (MPPT) for the wind and solar power, effective charging/discharging for the storage system, LED dimming control for saving energy, and remote data logging for monitoring the performance and maintenance. The proposed system was analyzed in regard to the operation status of the hybrid input power and the battery voltage using a PSIM simulation. In addition, the characteristics of the proposed system's output were analyzed through experimental verification. A prototype was also developed which uses 300[W] of wind power, 200[W] of solar power, 60[W] LED lighting, and a 24[V]/80[Ah] battery. The control system principles and design scheme of the hardware and software are presented.

35 kWh급 초전도 플라이휠 에너지 저장 시스템 프레임 설계 및 제작 (Design and Construction of 35 kWh Class Superconductor Flywheel Energy Storage System Main Frame)

  • 정세용;한영희;박병준;한상철
    • Progress in Superconductivity
    • /
    • 제13권1호
    • /
    • pp.52-57
    • /
    • 2011
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. The 35 kWh class SFES is composed of a main frame, superconductor bearings, electro-magnetic dampers, a motor/generator, and a composite flywheel. The energy storing capacity of the SFES can be limited by the operational speed range of the system. The operational speed range is limited by many factors, especially the resonant frequency of the main frame and flywheel. In this study, a steel frame has been designed and constructed for a 35 kWh class SFES. All the main parts, their housings, and the flywheel are aligned and assembled on to the main frame. While in operation, the flywheel excites the main frame, as well as all the parts assembled to it, causing the system to vibrate at the rotating speed. If the main frame is excited at its resonant frequency, the system will resonate, which may lead to unstable levitation at the superconductor bearings and electro-magnetic dampers. The main frame for the 35 kWh class SFES has been designed and constructed to improve stiffness for the stable operation of the system within the operational speed range.

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

Grid Independent Photovoltaic Fuel-Cell Hybrid System: Design and Control Strategy

  • Islam Saiful;Belmans Ronnie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.399-404
    • /
    • 2005
  • In this paper, a hybrid photovoltaic fuel-cell generation system employing an electrolyzer for hydrogen generation and battery for storage purpose is designed and simulated. The system is applicable for remote areas or isolated DC loads. Control strategy has been considered to achieve permanent power supply to the load via the photovoltaic/battery or the fuel cell based on the power available from the sun. MATLAB and SIMULINK have been used for the simulation work. A sensitivity analysis is conducted for various load level based on availability of solar radiation.

배터리 에너지 저장장치를 이용한 10kW 풍력발전출력 안정화 시스템 개발 (Battery energy storage system for 10kW wind turbine output stabilization)

  • 오승진;한병문
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.36-37
    • /
    • 2010
  • This paper presents a simulation model and results of experiment about analysis of grid-tied wind turbine generator with batteries. The system consists of two inverters and a bidirectional DC/DC converter. These inverters are to capture the maximum active power under varying wind conditions and to keep the DC-link voltage magnitude at a specific level. And the bidirectional DC/DC converter makes battery charging or discharging depend on power gap between wind turbine output and local load.

  • PDF