• Title/Summary/Keyword: Battery cooling

Search Result 82, Processing Time 0.027 seconds

Study on the Heat Performance of CNT/carbon Fiber Plane Heater (탄소계 면상발열체 발열 특성 연구)

  • Ko, Yeongung;Kang, Yeongsik;Chung, Yongsik
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Electrical energy is used for heating and cooling because electric cars do not have engines and cooling water. The downside is that when the heating and cooling system is applied to electric vehicles, about 40 percent of the energy is spent on heating and cooling, which is less efficient in winter. This has increased demand for electric vehicle battery efficiency. In this study, the condensation and dispersion of carbon nanotubes were controlled, and carbon fibers and composite slurry were manufactured without binders to manufacture paper. Manufactured by content showed the highest heat generation characteristic at 143℃ with a carbon fiber content ratio of 20wt% and confirmed that the heat temperature rises with increasing pressure. The plane heaters made through this study can be applied to a variety of products other than electric vehicles because they can be simplified by process and high temperature.

Numerical analysis for development of vehicle engine room cooling hood (차량 엔진룸 냉각용 후드 개발을 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.92-97
    • /
    • 2018
  • This study deals with the numerical analysis for hood development to improve the cooling effect of the engine related components in engine room. Reducing the component temperature in engine room caused by a sudden temperature deviation can minimize the durability degradation of components. Therefore, in this study, numerical analysis for the development of the hood in engine room was carried out in four parts such as generator, battery, ECU and power steel oil which are relatively easy to control temperature among the main components in engine room. In order to verify the numerical analysis, experiments were conducted under the same conditions as those assumed in the numerical analysis.

A Performance Evaluation of a Heat Dissipation Design for a Lithium-Ion Energy Storage System Using Infrared Thermal Imaging (적외선 열화상을 활용한 리튬 이온 ESS의 방열설계 성능평가에 관한 연구)

  • Kim, Eun-Ji;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.105-110
    • /
    • 2020
  • The global battery market is rapidly growing due to the development of vehicles(EV) and wireless electronic products. In particular logistics robots, which hielp to produce EVs, have attracted much interest in research in Korea Because logistics sites and factories operate continuously for 24 hours, the technology that can dramatically increase the operation time of the logistics equipment is rapidly developing, and various high-level technologies are required for the batteries used in. for example, logistics robots. These required technologies include those that enable rapid battery charging as well wireless charging to charge batteries while moving. The development of these technologies, however, result in increasing explosions and topical accidents involving rapid charging batteries These accidents due to the thermal shock caused by the heat generated during the charging of the battery cell. In this study, a performance evaluation of a heat dissipation design using infrared thermal imaging was performed on an energy storage systrm(Ess) applied with an internal heat conduction cooling method using a heating plate.

Thermal management system for electric vehicle batteries and technology trends (전기자동차용 배터리 및 열관리시스템 기술동향)

  • Seo, Hyun Sang;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • Challenges the automotive industry as the increase in consumption of oil and energy, $CO_2$ emissions of global warming, caused by exhaust emissions and urban air pollution, it is time for a deal is needed. The solution of these highly regarded in the market as there is a demand of electric cars. In this study, electric car motor, battery and high-voltage core components, including the drive motor of the effective thermal management technologies, thermal management of the battery and the drive motor to evaluate the technology and development trends.

Quantitative Visualization of Inlet Flow of the Centrifugal Blower (원심 블로어 입구 유동의 정량적 가시화 연구)

  • Jeong, Tae-Sik;Tu, Xin Cheng;Kim, Sung-Jun;Jang, Hwan-Young;Kim, Jin-Kwang;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2013
  • The inlet flow of centrifugal blower were quantitatively visualized using particle image velocimetry. Because the centrifugal blower system is one of the key parts of EV battery cooling system, the quantitative information of flow field of centrifugal blower is important to design and optimize the cooling system. Two types of inlet parts were used in this study. One is the straight inlet and the other is a bended one. The results showed the flow asymmetry exists in the straight model due to the pressure difference in the blower. In case of the bended one, the separation bubble and the increase of head loss appeared compared with the straight model.

Optimal Cooling Operation of a Single Family House Model Equipped with Renewable Energy Facility by Linear Programming (신재생에너지 단독주택 모델 냉방운전의 선형계획법 기반 운전 최적화 연구)

  • Shin, Younggy;Kim, Eui-Jong;Lee, Kyoung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.638-644
    • /
    • 2017
  • Optimal cooling operation algorithm was developed based on a simulation case of a single family house model equipped with renewable energy facility. EnergyPlus simulation results were used as virtual test data. The model contained three energy storage elements: thermal heat capacity of the living room, chilled water storage tank, and battery. Their charging and discharging schedules were optimized so that daily electricity bill became minimal. As an optimization tool, linear programming was considered because it was possible to obtain results in real time. For its adoption, EnergyPlus-based house model had to be linearly approximated. Results of this study revealed that dynamic cooling load of the living room could be approximated by a linear RC model. Scheduling based on the linear programming was then compared to that by a nonlinear optimization algorithm which was made using GenOpt developed by a national lab in USA. They showed quite similar performances. Therefore, linear programming can be a practical solution to optimal operation scheduling if linear dynamic models are tuned to simulate their real equivalents with reasonable accuracy.

Theoretical Heat Flow Analysis and Vibration Characteristics During Transportation of PCS(Power Conversion System) for Reliability (전력변환장치 캐비넷에서의 내부발열 개선을 위한 열유동 분석 및 유통안전성 향상을 위한 진동특성 분석)

  • Joo, Minjung;Suh, Sang Uk;Oh, Jae Young;Jung, Hyun-Mo;Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • PCS needs to freely switch AC and DC to connect the battery, external AC loads and renewable energy in both directions for energy efficiency. Whenever converting happens, power loss inevitably occurs. Minimization of the power loss to save electricity and convert it for usage is a very critical function in PCS. PCS plays an important role in the ESS(Energy Storage System) but the importance of stabilizing semiconductors on PCB(Printed Circuit Board) should be empathized with a risk of failure such as a fire explosion. In this study, the temperature variation inside PCS was reviewed by cooling fan on top of PCS, and the vibration characteristics of PCS were analyzed during truck transportation for reliability of the product. In most cases, a cooling fan is mounted to control the inner temperature at the upper part of the PCS and components generating the heat placed on the internal aluminum cooling plate to apply the primary cooling and the secondary cooling system with inlet fans for the external air. Results of CFD showed slightly lack of circulating capacity but simulated temperatures were durable for components. The resonance points of PCS were various due to the complexity of components. Although they were less than 40 Hz which mostly occurs breakage, it was analyzed that the vibration displacement in the resonance frequency band was very insufficient. As a result of random-vibration simulation, the lower part was analyzed as the stress-concentrated point but no breakage was shown. The steel sheet could be stable for now, but for long-term domestic transportation, structural coupling may occur due to accumulation of fatigue strength. After the test completed, output voltage of the product had lost so that extra packaging such as bubble wrap should be considered.

A Study on Numerical Analysis for Internal PEMFC Cooling of Power Pack for UPS (UPS 파워 팩 내부 연료전지의 냉각특성에 대한 수치 해석)

  • Song, Jun-Seok;Kim, Byeong-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.527-535
    • /
    • 2017
  • Heat management is one of the most critical issues in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) installed inside the fuel cell power pack of a fuel cell battery hybrid UPS. If the heat generated by the chemical reaction in the fuel cell is not rapidly removed, the durability and performance of the fuel cell may be affected, which may shorten its lifetime. Therefore, the objective of this study is to select and propose a proper cooling method for the fuel cells used in the fuel cell power pack of a UPS. In order to find the most appropriate cooling method, the various design factors affecting the cooling performance were studied. The numerical analysis was performed by a commercial program, i.e., COMSOL Multiphysics. Firstly, the surface temperature of the 1 kW class fuel cell stack with the cooling fans placed at the top was compared with the one with the cooling fans placed at the bottom. Various rotation speeds of the cooling fan, viz. 2,500, 3,000, 3,500, and 4,000 RPM, were tested to determine the proper cooling fan speed. In addition, the influence of the inhaled air flow rate was investigated by changing the porous area of the grille, which is the entrance of the air flowing from the outside to the inside of the power pack. As a result, it was found that for the operating conditions of the 1 kW class PEMFC to be acceptable, the cooling fan was required to have a minimum rotating speed of 3500 RPM to maintain the fuel cell surface temperature within an acceptable range. The results of this study can be effectively applied to the development of thermal management technology for the fuel cells inside the fuel cell power pack of a UPS.

Development of Fuel Cell/Battery Hybrid Vehicle (연료전지/배터리 하이브리드 차량 개발)

  • Son Yeong Jun;Park Gu Gon;Im Seong Dae;Eom Seok Gi;Yang Tae Hyeon;Yun Yeong Gi;Lee Won Yong;Kim Chang Su
    • 한국전기화학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.103-110
    • /
    • 2005
  • Fuel cell systems are consisted of various parts, for example fuel cell stack, fuel supplier, electrical converters, controllers and so on. Each components of system should have appropriate specification for their applications as well as simplicity. Because thermal load can be managed simply by using fans without any water cooling system, the air-cooled PEMFC is widely used in sub kW and around 1kW systems. The performance of an air-cooled system is highly dependent on ambient temperature and humidity. In this paper, the air-cooled PEMFC systems are developed and investigated to study the operating characteristics in the aspect of the thermal and water coupled management by the control of the axial fans and compressors. Various experiments were also conducted to get the cell voltage distribution, the relative humidity of the reactant gas and the thermal management by axial cooling fans, which cannot be observed in single cell experiment. After then, as practical applications, portable fuel cell system and a hybrid electric cart were successfully integrated and operated by using this air-cooled stack.

  • PDF

Quantitative Visualization of Outlet Flow of the Centrifugal Blower (원심 블로어 출구 유동의 정량적 가시화 연구)

  • Tu, Xin Cheng;Kim, Sung-Jun;Park, Seung Ha;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.25-29
    • /
    • 2014
  • The outlet flow of the centrifugal blower were quantitatively visualized using particle image velocimetry. Because the centrifugal blower is one of the key parts of electric vehicle battery cooling system, the quantitative information of centrifugal blower is necessary to design and optimize the cooling system. The effect of different inlet flow condition to the outlet flow was investigated in this study. Two different inlet ducts were used. One is the straight inlet and the other is a bended one. The results clearly showed the outlet flow asymmetry in both inlet ducts. When the blower has the bended inlet, the flow rate decreases due to the increase of the head loss.