• 제목/요약/키워드: Battery charging and discharging

검색결과 214건 처리시간 0.033초

New Soft-Switching Method of 3-phase Interleaved Bidirectional DC-DC Converter for Battery Charging and Discharging (배터리 충·방전용 3상 인터리브드 양방향 DC-DC 컨버터의 새로운 소프트 스위칭 방법)

  • Jung, Jae-Hun;Seo, Bo-Gil;Kwon, Chang-Keun;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.383-390
    • /
    • 2014
  • This paper deals with novel soft-switching method for a bidirectional DC-DC converter in battery charging and discharging system. The proposed soft-switching method provides ZVS and ZCS at turn-on, and ZVS at turn-off of the switch in both charging and discharging operation modes. The soft switching condition can be obtained in wide load range, and provide low switching loss as well as low voltage spike at turn-off of the switch. Proposed method is analyzed in charging and discharging mode. Simulation and experimental results validate the usefulness of the proposed soft-switching method.

A study on the auto-charging circuit of the battery power units using trigger characteristics of semiconductor device (반도체 스위칭 소자의 트리거 특성을 이용한 배터리 자동 충전회로에 관한 연구)

  • 김영민;황종선;박성진;임종연;송승호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.519-522
    • /
    • 2001
  • Recently, the battery charging technology and reducing technology of harmonics on AC input line are rising importantly according to increasing electrical facilities that it has been replaced battery with emergency power. In this study, I proposed that an auto-charging circuit of battery has low cost with simple-construction circuit, relative, harmonics reduction with diode tap-change method, high reliability of system for using characteristics of thyristor switching. In case of this circuit, convenience and reliability of maintenance of battery power units were more improved. 1 think that it is resulted in effect of prevention to shortening of battery life from over-charging and over-discharging and decrease of harmonics obstacle on AC input line.

  • PDF

Optimal Charging and Discharging for Multiple PHEVs with Demand Side Management in Vehicle-to-Building

  • Nguyen, Hung Khanh;Song, Ju Bin
    • Journal of Communications and Networks
    • /
    • 제14권6호
    • /
    • pp.662-671
    • /
    • 2012
  • Plug-in hybrid electric vehicles (PHEVs) will be widely used in future transportation systems to reduce oil fuel consumption. Therefore, the electrical energy demand will be increased due to the charging of a large number of vehicles. Without intelligent control strategies, the charging process can easily overload the electricity grid at peak hours. In this paper, we consider a smart charging and discharging process for multiple PHEVs in a building's garage to optimize the energy consumption profile of the building. We formulate a centralized optimization problem in which the building controller or planner aims to minimize the square Euclidean distance between the instantaneous energy demand and the average demand of the building by controlling the charging and discharging schedules of PHEVs (or 'users'). The PHEVs' batteries will be charged during low-demand periods and discharged during high-demand periods in order to reduce the peak load of the building. In a decentralized system, we design an energy cost-sharing model and apply a non-cooperative approach to formulate an energy charging and discharging scheduling game, in which the players are the users, their strategies are the battery charging and discharging schedules, and the utility function of each user is defined as the negative total energy payment to the building. Based on the game theory setup, we also propose a distributed algorithm in which each PHEV independently selects its best strategy to maximize the utility function. The PHEVs update the building planner with their energy charging and discharging schedules. We also show that the PHEV owners will have an incentive to participate in the energy charging and discharging game. Simulation results verify that the proposed distributed algorithm will minimize the peak load and the total energy cost simultaneously.

Rapid Charger for 48V Lead-acid Battery (48V용 납축전지 급속 충전기)

  • Ahn, S.H.;Jang, S.R.;Ryoo, H.J.;Mo, S.C.;Oh, S.W.;Park, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.945_946
    • /
    • 2009
  • This paper describes the development of the rapid battery charger for lead-acid battery. Due to heat which is caused by increased internal resistance during charging, it is difficult to increase charging current for the lead-acid battery. In this paper, the rapid charging algorithm which apply short discharging pulse current during charging procedure is developed and it makes the ion layer, which is generated during charging time, disappeared into electrolyte. The prototype battery charger based on resonant converter is developed for 48V battery charger and test procedure is introduced.

  • PDF

Characteristics of Lithium-ion(Li-ion) Batteries according to Charging and Discharging by Scenario (시나리오별 충방전에 따른 리튬이온(Li-ion) 배터리 특성)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제23권4호
    • /
    • pp.171-176
    • /
    • 2023
  • In the modern society of the 21st century, portable electronic products using secondary batteries are continuously becoming lightweight and miniaturized. And along with this trend, we are active in the era of the Fourth Industrial Revolution, where we collect and share information in our daily lives using wearable electronic devices. Therefore, the role of secondary batteries that can be recharged while using small home appliances and digital devices is increasingly important. Along with this increase, secondary battery performance tests require various test methods such as characteristics, lifespan, failure diagnosis, and recycling. In addition, the construction of a battery test system to ensure the safety and proper functioning of the battery, along with guidelines and correct basic knowledge are being considered. Therefore, in this paper, we will examine the characteristics of the secondary battery Li-ion battery according to the charging and discharging scenarios directly connected to the performance of the battery.

The charging and discharging specifications of the capacitor to the battery applied devices (배터리 적용 기기의 커패시터 충방전 특성)

  • Kim, Cherl-Jin;Hong, Sung-Ho;Lee, Soo-Rang;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1146-1148
    • /
    • 2007
  • This paper proposes a method to improve the charging speed and discharging performance of a high voltage capacitor used in a portable medical device. The improvement of the charging speed was achieved by duty cycle control. The discharging performance was carried out by varying the phase duration and the leading edge voltage of the output according to the transthoracic impdedance of the patient. As a result, the improvement in the charging speed and the performance of the discharging parameters shorten the patient treatment time.

  • PDF

Test Facility of Battery Simulator for Dynamic Characteristics and Safety Evaluation in Lithium-ion Battery (리튬이온 배터리 동특성 및 안전성 평가를 위한 배터리 시뮬레이터 시험설비)

  • Sungin Jeong;Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제24권2호
    • /
    • pp.133-138
    • /
    • 2024
  • Lithium-ion batteries are used in many fields due to their high energy density, fast charging conditions, and long cycle life. However, overcharging, over-discharging, physical damage, and use of lithium-ion batteries at high temperatures can reduce battery life and cause damage to people due to fire or explosion due to damage to the protection circuit. In order to reduce the risk of these batteries and improve battery performance, the characteristics of the charging and discharging process must be analyzed and understood. Therefore, in this paper, we analyze the charging and discharging characteristics of lithium-ion batteries using a battery charger and discharger and simulator to reduce the risk of loss of life due to overcharge and overdischarge, as well as casualties from fire and explosion due to damage to the protection circuit.

Development of a Charging/Discharging Balance Simulator (충방전 Balance Simulator 개발)

  • Park, Dong-Kyun;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제44권1호
    • /
    • pp.67-73
    • /
    • 2007
  • Prototype of an electric charge/discharge balance simulator was developed for evaluation of matching charging/discharging balance between real system and simulation results for specific vehicle in this research. Battery modeling and other electric modeling were done and real car experiments were performed. Then, We developed a balance simulator on the basis of proposed model and experiment results. Also, we can analyze charging/discharging balance for specific new car as real experiments.

A Study on Maximum Power Measurement Method for NOVC-type Hybrid Electric Vehicle (NOVC형식 하이브리드 자동차의 최고 출력측정방법 연구)

  • Kim, Joowon;Yong, Geejoong
    • Journal of Auto-vehicle Safety Association
    • /
    • 제10권2호
    • /
    • pp.36-42
    • /
    • 2018
  • UNECE/WP29/GRPE/EVE has recently defined that the power of a hybrid electric vehicle is the system power. Although a method for measuring the maximum power of a hybrid electric vehicle is presented by KATRI, it does not consider charging and discharging characteristics of traction batteries. This study provides a maximum power measurement method which reflects the charging and discharging characteristics of traction batteries in NOVC-HEVs (Not Off Vehicle Charging-Hybrid Electric Vehicles). Both methods are compared with regard to the output measurement results.

Analysis and Implementation of a DC-DC Converter for Hybrid Power Supplies Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1438-1445
    • /
    • 2015
  • A new DC-DC power converter is researched for renewable energy and battery hybrid power supplies systems in this paper. At the charging mode, a renewable energy source provides energy to charge a battery via the proposed converter. The operating principle of the proposed converter is the same as the conventional DC-DC buck converter. At the discharging mode, the battery releases its energy to the DC bus via the proposed converter. The proposed converter is a non-isolated high step-up DC-DC converter. The coupled-inductor technique is used to achieve a high step-up voltage gain by adjusting the turns ratio. Moreover, the leakage-inductor energies of the primary and secondary windings can be recycled. Thus, the conversion efficiency can be improved. Therefore, only one power converter is utilized at the charging or discharging modes. Finally, a prototype circuit is implemented to verify the performance of the proposed converter.