• 제목/요약/키워드: Battery Storage

Search Result 897, Processing Time 0.035 seconds

A study on lead exposure indices of male workers exposed to lead less than 1 year in storage battery industries (축전지 제조업에서 입사 1년 미만 남자 사원들의 연 노출 지표치에 관한 연구)

  • HwangBo, Young;Kim, Yong-Bae;Lee, Gap-Soo;Lee, Sung-Soo;Ahn, Kyu-Dong;Lee, Byung-Kook;Kim, Joung-Soon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.4 s.55
    • /
    • pp.747-764
    • /
    • 1996
  • This study intended to obtain an useful information for health management of lead exposed workers and determine biological monitoring interval in early period of exposure by measuring the lead exposure indices and work duration in all male workers (n=433 persons) exposed less than 1 year in 6 storage battery industries and in 49 males who are not exposed to lead as control. The examined variables were blood lead concentration (PBB), Zinc-protoporphyrin concentration (ZPP), Hemoglobin (HB) and personal history; also measured lead concentration in air (PBA) in the workplace. According to the geometric mean of lead concentration in the air, the factories were grouped into three categories: A; When it is below $0.05mg/m^3$, B; When it is between 0.05 and $0.10mg/m^3$, and C; When it is above $0.10mg/m^3$. The results obtained were as follows: 1. The means of blood lead concentration (PBB), ZPP concentration and hemoglobin(HB) in all male workers exposed to lead less than 1 year in storage battery industries were $29.5{\pm}12.4{\mu}g/100ml,\;52.9{\pm}30.0{\mu}g/100ml\;and\;15.2{\pm}1.1\;gm/100ml$. 2. The means of blood lead concentration (PBB), ZPP concentration and hemoglobin(HB) in control group were $5.8{\pm}1.6{\mu}g/100ml,\;30.8{\pm}12.7{\mu}g/100ml\;and\;15.7{\pm}1.6{\mu}g/100ml$, being much lower than that of study group exposed to lead. 3. The means of blood lead concentration and ZPP concentration among group A were $21.9{\pm}7.6{\mu}g/100,\;41.4{\pm}12.6{\mu}g/100ml$ ; those of group B were $29.8{\pm}11.6{\mu}g/100,\;52.6{\pm}27.9{\mu}g/100ml$ ; those of group C were $37.2{\pm}13.5{\mu}g/100,\;66.3{\pm}40.7{\mu}g/100ml$. Significant differences were found among three factory group(P<0.01) that was classified by the geometric mean of lead concentration in the air, group A being the lowest. 4. The mean of blood lead concentration of workers who have different work duration (month) was as follows ; When the work duration was $1\sim2$ month, it was $24.1{\pm}12.4{\mu}g/100ml$, ; When the work duration was $3\sim4$ month, it was $29.2{\pm}13.4{\mu}g/100ml$ ; and it was $28.9\sim34.5{\mu}g/100ml$ for the workers who had longer work duration than other. Significant differences were found among work duration group(P<0.05). 5. The mean of ZPP concentration of workers who have different work duration (month) was as follows ; When the work duration was $1\sim2$ month, it was $40.6{\pm}18.0{\mu}g/100ml$, ; When the work duration was $3\sim4$ month, it was $53.4{\pm}38.4{\mu}g/100ml$ ; and it was $51.5\sim60.4{\mu}g/100ml$ for the workers who had longer work duration than other. Significant differences were found among work duration group(P<0.05). 6. Among total workers(433 person), 18.2% had PBB concentration higher than $40{\mu}g/100ml$ and 7.1% had ZPP concentration higher than $100{\mu}g/100ml$ ; In workers of factory group A, those were 0.9% and 0.0% ; In workers of factory group B, those were 17.1% and 6.9% ; In workers of factory group C, those were 39.4% and 15.4%. 7. The proportions of total workers(433 person) with blood lead concentration lower than $25{\mu}g/100ml$ and ZPP concentration lower than $50{\mu}g/100ml$ were 39.7% and 61.9%, respectively ; In workers of factory group A, those were 65.5% and 82.3% : In workers of factory group B, those were 36.1% and 60.2% ; In workers of factory group C, those were 19.2% and 43.3%. 8. Blood lead concentration (r=0.177, P<0.01), ZPP concentration (r=0.135, P<0.01), log ZPP (r=0.170, P<0.01) and hemoglobin (r=0.096, P<0.05) showed statistically significant correlation with work duration (month). ZPP concentration (r=0.612, P<0.01) and log ZPP (r=0.614, P<0.01) showed statistically significant correlation with blood lead concentration 9. The slopes of simple linear regression between work duration(month, independent variable) and blood lead concentration (dependent variable) in workplace with low air concentration of lead was less steeper than that of poor working condition with high geometric mean air concentration of lead. The study result indicates that new employees should be provided with biological monitoring including blood lead concentration test and education about personal hygiene and work place management within $3\sim4$ month.

  • PDF

Characterization of SEI layer for Surface Modified Cathode of Lithium Secondary Battery Depending on Electrolyte Additives (전해질 첨가제에 따른 graphite 음극의 SEI분석 및 전기 화학적 특성 고찰)

  • Lee, Sung Jin;Cha, Eun Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.69-79
    • /
    • 2016
  • Lithium ion battery with high energy density is expanding its application area to electric automobile and electricity storage field beyond existing portable electric devices. Such expansion of an application field is demanding higher characteristic and stable long life characteristic of an anode material, the natural graphite that became commercialized in lithium ion battery. This thesis produced cathode by using natural graphite anode material, analyzed creation of the cathode SEI film created due to initial reaction by using electrolyte additives, VC (vinylene carbonate), VEC (vinyl ethylene carbonate), and FEC (fluoroethylene carbonate), and considered correlation with the accompanying electrochemical transformation. This study compared and analyzed the SEI film variation of natural graphite cathode according to the electrolyte additive with SEI that is formed at the time of initial filling and cathode of $60^{\circ}C$ life characteristic. At the time of initial filling, the profile showed changes due to the SEI formation, and SEI was formed in No-Additive in approximately 0.9 V through EVS, but for VC, VEC, and FEC, the formation reaction was created above 1 V. In $60^{\circ}C$ lifespan characteristic evaluation, the initial efficiency was highest in No-Additive and showed high contents percentage, but when cycle was progressed, the capacity maintenance rate decreased more than VC and FEC as the capacity and efficiency at the time of filling decreased, and VEC showed lowest performance in efficiency and capacity maintenance rate. Changes of SEI could not be verified through SEM, but it was identified that as the cycle of SEI ingredients was progressed through FT-IR, ingredients of Alkyl carbonate ($RCO_2Li$) affiliation of the $2850-2900cm^{-1}$ was maintained more solidly and the resistance increased as cycle was progressed through EIS, and specially, it was identified that the resistance due to No-Additive and SEI of VEC became very significant. Continuous loss of additives was verified through GC-MS, and the loss of additives from partial decomposition and remodeling of SEI formed the non-uniform surface of SEI and is judged to be the increase of resistance.

Electrochemical Characteristic Change of Cr-doped Li4Ti5O12 due to Different Water Solubility of Dopant Precursors (도판트 프리커서의 용해도 차이에 의한 Cr-doped Li4Ti5O12의 전기화학적 특성 변화)

  • Yun, Su-Won;Song, Hannah;Kim, Yong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • $Li_4Ti_5O_{12}$ (LTO) have attracted much attention of researchers in the field of energy storage, because of their excellent stability for electric vehicle application. A main drawback of LTO is however their insulating nature due to the wide bandgap, which should be addressed to enhance the battery performance. In this study, we investigated the effect of water solubility of dopant precursor on the electrochemical characteristics of conducting LTO prepared by doping with $Cr^{3+}$ ions with the well-known wet-mixing method. The solubility of dopant precursor directly affected the morphology and the phase of doped LTO, and therefore their battery performance. In the case of employing the most soluble dopant precursor, $Cr(NO_3)_2$, the doped LTO demonstrated a markedly enhanced discharge capacity at high C-rate (130mAh/g @ 10C), which is about 2 times higher value than that of bare LTO.

Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V ($AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성)

  • Kim, D.H.;Cho, S.W.;Jung, S.R.;Park, C.N.;Choi, J.
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.

A Research on transmission energy and data using induced electromotive force of coil (코일의 유도기전력을 이용한 에너지 및 데이터 전송방법에 관한 연구)

  • Jung, Hee-Chur;Seo, Jung-Hwa;Kim, Kyoung-Rok;Kim, Myung-Hyun;Koo, Ja-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.607-615
    • /
    • 2016
  • This study concerns the transmission of energy and data using induced electromotive force. Due to the requirements of weapon systems, most arms are kept in an armory for a very long time before being used. During this time, the reserve battery, which serves mostly as a power supply for the electronic fuze, can be degraded, thus causing problems when it is actually needed. We attempt to solve the various problems associated with the old fuze system caused by long-term storage by using the 'induction power' transmitted from another device just before its operation, instead of using 'built-in power'. We tried to find the best carrier frequency to communicate with the system by induced electromotive force. Also, we changed the communication method for transmitting the 'induction power' from 'FM/AM modulation' to 'Duty ratio modulation', which can transmit a large amount of data in a short time. Through experiments, it was demonstrated that the induction coil can replace the reserve fuze's battery without any problem, thus confirming the possibility of using an induction coil as the power supply source of the electronic fuze.

A Study on the H3PO4-Treated Soft Carbon as Anode Materials for Lithium Ion Batteries (리튬이온전지용 소프트카본 음극 소재의 인산 처리에 대한 연구)

  • Jo, Yong-Nam;Lee, En-Young;Park, Min-Sik;Hong, Ki-Joo;Lee, Sang-Ick;Jeong, Hu-Young;Lee, Zonghoon;Oh, Seung M.;Kim, Young-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.207-215
    • /
    • 2012
  • Soft carbons are prepared by heat-treatment of cokes with different amounts of phosphoric acid (2, 4.5, and 10 wt% vs. cokes) at $900^{\circ}C$ to be used as anode materials for lithium ion batteries. From electrochemical measurements combined with structural analyses, we confirm that abundant nano-pores are existed in the microstructure of soft carbons prepared with the phosphoric acid, which are responsible for further lithium ion storage. Significant increase in reversible capacity of soft carbon is attained in proportion to added amount of the phosphoric acid. We also demonstrate the effect of structural modification with phosphoric acid on electrochemical performance of soft carbon to elucidate the origin of additional capacity.

Perfluorinated Sulfonic Acid based Composite Membranes for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지를 위한 과불소화 술폰산 복합막)

  • Cho, Kook-Jin;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Vanadium redox flow batteries (VRFBs) using the electrolytes containing various vanadium ions in sulfuric acid as supporting solution are one of the energy storage devices in alternatively charging and discharging operation modes. The positive electrolyte contains $V^{5+}/V^{4+}$ and the negative electrolyte $V^{2+}/V^{3+}$ depending on the operation mode. To prevent the mixing of two solutions, proton exchange membranes are mainly used in VRFBs. Nafion 117 could be the most promising candidate due to the strong oxidative property of $V^{5+}$ ion, but causes high crossover of electroactive species to result in a decrease in coulombic efficiency. In this study, the composite membranes using Nafion ionomer and porous polyethylene substrate were prepared to keep good chemical stability and to decrease the cost of membranes, and were compared to the properties and performance of the commercially available electrolyte membrane, Nafion 117. As a result, the water uptake and ionic conductivity of the composite membranes increased as the thickness of the composite membranes increased, but those of Nafion 117 slightly decreased. The permeability of vanadium ions for the composite membranes significantly decreased compared to that for Nafion 117. In a single cell test for the composite membranes, the voltage efficiency decreased and the coulombic efficiency increased, finally resulting in the similar energy efficiency. In conclusion, the less cost of the composite membranes by decreasing 6.4 wt.% of the amount of perfluorinated sulfonic acid polymer due to the introduction of porous substrate and lower vanadium ion permeability to decrease self-discharge were achieved than Nafion 117.

Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material (TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성)

  • Choi, Byung-Hyun;Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

Electrochemical Characteristics of Ru Added Li4Ti5O12 as an Anode Material (Ru를 첨가한 음극활물질 Li4Ti5O12의 전기화학적 특성)

  • Cho, Woo-Ram;Na, Byung-Ki
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.433-438
    • /
    • 2014
  • There is an increasing interest in the development of rechargeable batteries suitable for use in both hybrid electric vehicles and energy storage systems that require higher charge & discharge rates, bigger battery sizes and increased safety of the batteries. Spinel-type lithium titanium oxide ($Li_4Ti_5O_{12}$) as a potential anode for lithium ion batteries has many advantages. It is a zero-strain materials and it experiences no structural change during the charge/discharge precess. Thus, it has long cycle life due to its structural integrity. It also offers a stable operation voltage of approximately 1.55 V versus $Li^+/Li$, above the reduction potential of most organic electrolyte. In this study, Ru added $Li_4Ti_5O_{12}$ composites were synthesized by solid state process. The characteristics of active material were investigated with TGA-DTA, XRD, SEM and charge/discharge test. The capacity was reduced when Ru was added, however, the polarization decreased. The capacity rate of $Li_4Ti_5O_{12}$ with Ru (3%, 4%) addition was reduced during the charge/discharge precess with 10 C-rate as a high current density.

Current Status and Future Research Directions of Separator Membranes for Lithium-Ion Rechargeable Batteries (리튬이차전지용 분리막 이해 및 최신 연구 동향)

  • Kim, Jung-Hwan;Lee, Sang-Young
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.337-350
    • /
    • 2016
  • Lithium-ion rechargeable batteries (LIBs) have garnered increasing attention with the rapid advancements in portable electronics, electric vehicles, and grid-scale energy storage systems which are expected to drastically change our future lives. This review describes a separator membrane, one of the key components in LIBs, in terms of porous structure and physicochemical properties, and its recent development trends are followed. The separator membrane is a kind of porous membrane that is positioned between a cathode and an anode. Its major functions involve electrical isolation between the electrodes while serving as an ionic transport channel that is filled with liquid electrolyte. The separator membranes are not directly involved in redox reactions of LIBs, however, their aforementioned roles significantly affect performance and safety of LIBs. A variety of research approaches have been recently conducted in separator membranes in order to further reinforce battery safeties and also widen chemical functionalities. This review starts with introduction to commercial polyolefin separators that are currently most widely used in LIBs. Based on this understanding, modified polyolefin separators, nonwoven separators, ceramic composite separators, and chemically active separators will be described, with special attention to their relationship with future research directions of advanced LIBs.