• Title/Summary/Keyword: Battery Power Control

Search Result 775, Processing Time 0.022 seconds

Development of an Underwater Rope-cutter Device and Controller for Removal of Propeller and Shaft Foreign Material for Small Vessel (소형선박용 프로펠러 및 샤프트 이물질 제거를 위한 수중절단기 기구 설계 및 제어기 개발)

  • Lee, Hunseok;Oh, Jin-Seok;Choi, Sun-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.927-935
    • /
    • 2019
  • Screw-failure accidents in small ships frequently occur in coastal waters. In particular, vessels' propulsion systems are frequently coiled due to objects such as fish-nets and ropes that float on the sea. The failure of the ship's propulsion system can cause primary accidents such as ship operation delays and drifting due to loss of power; furthermore, the possibility of secondary accidents such as those involving operators in the underwater removal of rope stuck in a propeller. Ships that do not have the proper tools to solve these problems must be either lifted onto land to be repaired or divers must dive directly under the ship to solve the problem. Accordingly, some small vessels have been equipped with rope-cutter devices on the propeller shaft to prevent ship propeller system accidents in recent years; however, they are not being applied efficiently due to the cost and time of installation. To solve these problems, this study develops an underwater rope-cutter device and controller for the removal of propeller and shaft foreign material in small vessels. This device has simple structures that use the principle of a saw. Meteor gears and crank pins were used for the straight-line rotation of saw blades of the underwater rope-cutters to allow for long strokes. Furthermore, the underwater rope-cutting machines can be operated by being connected to the ship battery. The user, a non-professional, can ensure convenience and stability by applying reverse current prevention and a speed control circuit so that it can be used more conveniently and safely.

A Backup Node Based Fault-tolerance Scheme for Coverage Preserving in Wireless Sensor Networks (무선 센서 네트워크에서의 감지범위 보존을 위한 백업 노드 기반 결함 허용 기법)

  • Hahn, Joo-Sun;Ha, Rhan
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.4
    • /
    • pp.339-350
    • /
    • 2009
  • In wireless sensor networks, the limited battery resources of sensor nodes have a direct impact on network lifetime. To reduce unnecessary power consumption, it is often the case that only a minimum number of sensor nodes operate in active mode while the others are kept in sleep mode. In such a case, however, the network service can be easily unreliable if any active node is unable to perform its sensing or communication function because of an unexpected failure. Thus, for achieving reliable sensing, it is important to maintain the sensing level even when some sensor nodes fail. In this paper, we propose a new fault-tolerance scheme, called FCP(Fault-tolerant Coverage Preserving), that gives an efficient way to handle the degradation of the sensing level caused by sensor node failures. In the proposed FCP scheme, a set of backup nodes are pre-designated for each active node to be used to replace the active node in case of its failure. Experimental results show that the FCP scheme provides enhanced performance with reduced overhead in terms of sensing coverage preserving, the number of backup nodes and the amount of control messages. On the average, the percentage of coverage preserving is improved by 87.2% while the additional number of backup nodes and the additional amount of control messages are reduced by 57.6% and 99.5%, respectively, compared with previous fault-tolerance schemes.

Explore the Activation of Marine Sports Experience by Applying the Extended Planned Action Theory (확장된 계획행동이론 적용을 통한 해양스포츠 체험 활성화 탐색)

  • Kim, Sung-Kue
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.2
    • /
    • pp.109-118
    • /
    • 2020
  • This study examines the relative usefulness of the TPB and Extended TPB with the addition of the "Battery" variable to participants in marine sports experiences. The characteristics of behavioral theories (attitude, subjective norms, perceived behavioral control, and revisit intention) were compared. A total of 420 questionnaires were distributed and surveyed using the convenience sampling method to the general public who participated in the marine sports experience in S city in 2019. Finally, 385 copies of valid samples were extracted, except for the questionnaire. The following analyzes were performed using SPSS 21.0 and AMOS 21.0. Frequency analysis, confirmatory factor analysis, concept reliability, AVE value, Cronbach's α correlation analysis, hierarchical regression analysis, and independent sample t-test were performed. First, in the TPB, three predictors were found to have a positive effect on revisit intention. Attitudes, subjective norms, and prior knowledge, except for behavioral control, were found to have a positive effect. Second, the explanatory power to explain the return intention was 51.8% (3.3% more than plan behavior theory, p = .000). It can be seen that when prior knowledge is added as a new variable, it is an important factor in explaining intention to return. Third, prior knowledge variables were classified into high and low groups to compare the characteristics of the extended planning behavior theory. The results of the analysis showed that the group with higher prior knowledge had a higher mean value for the constituent variables of the extended planning behavior theory.

Analysis on the Cooling Efficiency of High-Performance Multicore Processors according to Cooling Methods (기계식 쿨링 기법에 따른 고성능 멀티코어 프로세서의 냉각 효율성 분석)

  • Kang, Seung-Gu;Choi, Hong-Jun;Ahn, Jin-Woo;Park, Jae-Hyung;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.1-11
    • /
    • 2011
  • Many researchers have studied on the methods to improve the processor performance. However, high integrated semiconductor technology for improving the processor performance causes many problems such as battery life, high power density, hotspot, etc. Especially, as hotspot has critical impact on the reliability of chip, thermal problems should be considered together with performance and power consumption when designing high-performance processors. To alleviate the thermal problems of processors, there have been various researches. In the past, mechanical cooling methods have been used to control the temperature of processors. However, up-to-date microprocessors causes severe thermal problems, resulting in increased cooling cost. Therefore, recent studies have focused on architecture-level thermal-aware design techniques than mechanical cooling methods. Even though architecture-level thermal-aware design techniques are efficient for reducing the temperature of processors, they cause performance degradation inevitably. Therefore, if the mechanical cooling methods can manage the thermal problems of processors efficiently, the performance can be improved by reducing the performance degradation due to architecture-level thermal-aware design techniques such as dynamic thermal management. In this paper, we analyze the cooling efficiency of high-performance multicore processors according to mechanical cooling methods. According to our experiments using air cooler and liquid cooler, the liquid cooler consumes more power than the air cooler whereas it reduces the temperature more efficiently. Especially, the cost for reducing $1^{\circ}C$ is varied by the environments. Therefore, if the mechanical cooling methods can be used appropriately, the temperature of high-performance processors can be managed more efficiently.

A Microcomputer-Based Data Acquisition System (Microcomputer를 이용(利用)한 Data Acquisition System에 관(關)한 연구(硏究))

  • Kim, Ki Dae;Kim, Soung Rai
    • Journal of Biosystems Engineering
    • /
    • v.7 no.2
    • /
    • pp.18-29
    • /
    • 1983
  • A low cost and versatile data acquisition system for the field and laboratory use was developed by using a single board microcomputer. Data acquisition system based on a Z80 microprocessor was built, tested and modified to obtain the present functional system. The microcomputer developed consists of 6 kB ROM, 5 kB RAM, 6-seven segment LED display, 16-Hex. key and 8 command key board. And it interfaces with an 8 channel, 12 bits A/D converter, a microprinter, EPROM programmer for 2716, and RS232C interface to transfer data between the system and HP3000 mini-computer manufactured by Hewlett Packard Co., A software package was also developed, tested, and modified for the system. This package included drivers for the AID converter, LED display, key board, microprinter, EPROM programmer, and RS232c interface. All of these programs were written in 280 assembler language and converted to machine codes using a cross assembler by HP3000 computer to the system during modifying stage by data transferring unit of this system, then the machine language wrote to the EPROM by this EPROM programmer. The results are summarized as follows: 1. Measuring program developed was able to control the measuring intervals, No. of channels used, and No. of data, where the maximum measuring speed was 58.8 microsec. 2. Calibration of the system was performed with triangle wave generated by a function generator. The results of calibration agreed well to the test results. 3. The measured data was able to be written into EPROM, then the EPROM data was compared with original data. It took only 75 sec. for the developed program to write the data of 2 kB the EPROM. 4. For the slow speed measurements, microprinter instead of EPROM programmer proved to be useful. It took about 15 min. for microprinter to write the data of 2 kB. 5. Modified data transferring unit was very effective in communicating between the system and HP3000 computer. The required time for data transferring was only 1~2 min. 6. By using DC/DC converting devices such as 78-series, 79-series. and TL497 IC, this system was modified to convert the only one input power sources to the various powers. The available power sources of the system was DC 7~25 V and 1.8 A.

  • PDF