• Title/Summary/Keyword: Battery Power Control

Search Result 775, Processing Time 0.027 seconds

Development of Low Power Driven Inner Tap Inspection System capable of Wireless Communication with Video Equipment (영상기기와 무선통신이 가능한 저전력 구동의 이너탭 검사시스템 개발)

  • Ahn, Sung-Su
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.649-658
    • /
    • 2018
  • In this paper, we propose a mechanical contact inner tap inspection system that can inspect the defect of the inner tap immediately after inner tap is processed within the machining center. The inspection module has the collet chuck structure, so it can mounted on the main spindle of the machining center during inspection. It was developed with a focus on inspection for tap having 20 mm depth which is primarily fabricated in automotive parts and has a double sided PCB-type control system including sensing function based on Zigbee module, micom and IR sensor for wireless transmission of measured data with low power operation, and also a battery for supplying electric power. The current consumption is 46.8mA in the inspection operation mode and 0.0268mA in the power saving mode for 3.7V of the applied power source, so that 30,000 times or more inspection can be performed with assumed 5 seconds inspection time for one tap. Experiments in test jig system and actual machining center confirm that the proposed inner tap inspection system can be applied to the batch process of simultaneous inspection after tapping in the machining center.

A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS (PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구)

  • Cha, Insu;Park, Jongbok;Jung, Gyeonghwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation

A Study on the Energy Saving Hydraulic System Using Constant Pressure System (정압력원을 이용한 에너지 절감 유압 시스템에 관한 연구)

  • Cho, Y.R.;Yoon, J.I.;Yoon, J.H.;Lee, M.S.;Jo, W.K.;Yoon, H.S.;Ahn, K.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

Three-Phase 4-Wire Isolated Wind Energy Conversion System Employing VSC with a T-Connected Transformer for Neutral Current Compensation

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.211-218
    • /
    • 2009
  • This paper presents a voltage and frequency controller (VFC) for a 4-wire stand-alone wind energy conversion system (WECS) employing an asynchronous generator. The proposed VF con-troller consists of a three leg IGBT (Insulated Gate Bipolar Junction Transistor) based voltage source converter and a battery at its DC bus. The neutral terminal for the consumer loads is created using a T-connected transformer, which consists of only two single phase transformers. The control algorithm of the VF controller is developed for the bidirectional flow capability of the active power and reactive power control by which it controls the WECS voltage and frequency under different dynamic conditions, such as varying consumer loads and varying wind speeds. The WECS is modeled and simulated in MATLAB using Simulink and PSB toolboxes. Extensive results are presented to demonstrate the capability of the VF controller as a harmonic eliminator, a load balancer, a neutral current compensator as well as a voltage and frequency controller.

A Study on the Posture Control of a Humanoid Robot (휴머노이드 로봇의 자세 제어에 관한 연구)

  • Kim Jin-Geol;Lee Bo-Hee;Kong Jung-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.77-83
    • /
    • 2005
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has a battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joints don't maintain optimally, it is difficult for a robot to have working time for a long time. Also, if a gait trajectory doesn't have optimal state, the expected life span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by a PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration for the joint motion and distributed computation of the humanoid, ISHURO, and suggest its result such as the structure of the network and a disturbance observer.

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.

A Control of the ZVZCS PS-FB DC/DC Converter using All-Pass Filter (전역통과필터를 이용한 ZVZCS PS-FB DC/DC 컨버터의 제어)

  • Cho, Han-Jin;Lee, Won-Cheol;Lee, Sang-Seok;Lee, Su-Won;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.152-159
    • /
    • 2010
  • High power density and power conversion efficiency have been required in the power converters according to the rapid growth of industry. In this context, the next generation High Speed Train(HST) requires power converter which has high-efficiency, high-performance and high-density. In this paper, the new control technique for battery charger used for the next generation HST is proposed. The phase shift ZVZCS converter is classified according to a resonant circuit which is located in the primary or secondary side. In this paper, The PWM switching technique using all-pass filter is proposed to control ZVZCS converter which has resonant circuit in the secondary side. ATmega_128 micro controller based in all-pass filter in substitute for phase shift IC is presented to have digital control. To verify the proposed topology, the simulation and experiment are performed by using PSIM software and 1[kW] experimental set-up.

An Adaptive Transmission Power Control Algorithm for Wearable Healthcare Systems Based on Variations in the Body Conditions

  • Lee, Woosik;Kim, Namgi;Lee, Byoung-Dai
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.593-603
    • /
    • 2019
  • In wearable healthcare systems, sensor devices can be deployed in places around the human body such as the stomach, back, arms, and legs. The sensors use tiny batteries, which have limited resources, and old sensor batteries must be replaced with new batteries. It is difficult to deploy sensor devices directly into the human body. Therefore, instead of replacing sensor batteries, increasing the lifetime of sensor devices is more efficient. A transmission power control (TPC) algorithm is a representative technique to increase the lifetime of sensor devices. Sensor devices using a TPC algorithm control their transmission power level (TPL) to reduce battery energy consumption. The TPC algorithm operates on a closed-loop mechanism that consists of two parts, such as sensor and sink devices. Most previous research considered only the sink part of devices in the closed-loop. If we consider both the sensor and sink parts of a closed-loop mechanism, sensor devices reduce energy consumption more than previous systems that only consider the sensor part. In this paper, we propose a new approach to consider both the sensor and sink as part of a closed-loop mechanism for efficient energy management of sensor devices. Our proposed approach judges the current channel condition based on the values of various body sensors. If the current channel is not optimal, sensor devices maintain their current TPL without communication to save the sensor's batteries. Otherwise, they find an optimal TPL. To compare performance with other TPC algorithms, we implemented a TPC algorithm and embedded it into sensor devices. Our experimental results show that our new algorithm is better than other TPC algorithms, such as linear, binary, hybrid, and ATPC.

Fast Adaptation Techniques of Compensation Coefficient of Active Noise Canceller using Binary Search Algorithm (이진 탐색 알고리즘을 이용한 능동 노이즈 제거용 보정 계수 고속 적용 기법)

  • An, Joonghyun;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1635-1641
    • /
    • 2021
  • Portable systems with built-in active noise control is required low power operation. Excessive anti noise search operation can lead to rapid battery consumption. A method that can adaptively cancel noise according to the operating conditions of the system is required and the methods of reducing power are becoming very important key feature in today's portable systems. In this paper, we propose the method of active noise control(ANC) using binary search algorithm in noisy systems. The implemented architecture detects a frequency component considered as noise from the input signal and by using the binary search algorithm, the system find out an appropriate amplitude value for anti-noise in a much faster time than the general linear search algorithm. Through the experimental results, it was confirmed that the proposed algorithm performs a successful functional operation.

Integrated Control Algorithm of Hydraulic Pump with Electric Motor to Improve Energy Efficiency of Electric Excavator (전기굴삭기 에너지 효율 향상을 위한 유압펌프-전동기 통합 제어 알고리즘)

  • Lee, Jeeho;Lee, Jihye;Lee, Hyeongcheol;Oh, Chang Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • An electric excavator consumes battery energy to drive an electric motor attached to a hydraulic pump to generate hydraulic power. In a conventional hydraulic excavator, the hydraulic pump is controlled by regulators, which are used to optimize the diesel engine efficiency. Because of a lack of battery energy capacity, an electric excavator controller should consider not only the electric motor efficiency but also the hydraulic pump efficiency. Thus, electric motor and hydraulic pump efficiency maps were constructed. An optimal operating map (OOM) was created based on the most efficient operating points under each input condition. An integrated control algorithm controlled the speed of the electric motor and displacement of the hydraulic pump according to the OOM. To confirm the utility of this algorithm, a model-in-the-loop simulator for the algorithm with an electric excavator was established. The simulation results showed that the integrated control algorithm improved the energy efficiency of an electric excavator.