• Title/Summary/Keyword: Battery Power Control

Search Result 775, Processing Time 0.029 seconds

Power Control and Dynamic Performance Analysis of a Grid-Interactive Wind/PV/BESS Hybrid System (계통연계형 풍력, 태양광 및 축전지 하이브리드 시스템의 출력제어 및 동특성 해석)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Cho, Chang-Hee;Ahn, Jong-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.317-324
    • /
    • 2007
  • Most conventional hybrid systems using renewable energy sources have been applied for stand-alone operation, but Utility-interface may be an useful and viable option for hybrid systems. Grid-connected operation may have benefits such as reduced losses in power system distribution, utility support in demand side management, and peak load shaving. This paper addresses power control and dynamic performance of a grid-connected PV/wind/BESS hybrid system. At all times the PV way and the wind turbine are individually controlled to generate the maximum energy from given weather conditions. The battery energy storage system (BESS) charges or discharges the battery depending on energy gap between grid invertger generation and production from the PV and wind system. The BESS should be also controlled without too frequently repeated shifts in operation mode, charging or discharging. The grid inverter regulates the generated power injection into the grid. Different control schemes of the grid inverter are presented for different operation modes, which include normal operation, power dispatching, and power smoothing. Simulation results demonstrate that the effectiveness of the proposed power control schemes for the grid-interactive hybrid system.

Development of a Control System for E-Bike Based on IOT (IOT 기반의 전기 자전거 제어 시스템 개발)

  • Park, Jong-Jin;Cho, Bum-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.150-157
    • /
    • 2016
  • In this paper, a control system for E-bike based on IOT was developed, which collects and monitors information of states of E-bike and surrounding environments from several sensors and control devices in E-bike, and informs the possible dangers to rider when riding the E-bike. Developed electronic control system can manage battery efficiently, obtain battery's remaining power in real-time and provide possible riding distance to rider. It makes possible for rider to schedule near optimal riding route in terms of battery usage and respond quickly to battery discharge. Results of applying developed system to E-bike show that according to driving-mode, possible driving distance can be calculated efficiently and using user application App, real-time driver position marking and driving route searching functions lead to energy efficient E-bike driving. Later we will endeavor to integrate BMS, ECU, smart-phone and PC(server) to provide stable driving system based on various driving information of E-bike.

Fuzzy Droop Control considering SOC Balancing of BESSs (다수 BESS의 SOC Balancing을 고려한 퍼지 드룹 제어)

  • Han, Seong-Geun;Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.616-622
    • /
    • 2015
  • A microgrid which is composed of distributed generation systems, energy storage systems and loads is operated in the grid-connected mode and in the islanded mode. Especially, in the islanded mode, a microgrid should maintain frequency in the allowed range. The frequency is decided by a balance between power supply and power demand. In general, the frequency is controlled by using battery energy storage systems (BESSs) in the microgrid. Especially, droop control is applied to controlling BESSs in the microgrid. Meanwhile, over-charging and deep-discharging of BESS in operation and control cause life-shortening of batteries. In this paper, a fuzzy droop control is proposed to change droop gains adaptively by considering state of charge (SOC) of BESSs to improve the life cycle of the battery. The proposed fuzzy droop control adjusts droop gains based on SOC of BESSs in real time. In other to show the performance of the proposed fuzzy droop control, simulation based on Matlab/Simulink is performed. In addition, comparison of the convention droop control and the proposed fuzzy droop control is also performed.

Grid-interactive Small Battery Energy Storage System with High Power Quality and Demand Side Management (전력품질 개선 및 부하 분담 기능을 갖는 계통 연계형 소규모 에너지 저장 시스템)

  • Ko Sung-Hun;Shin Young-Chan;Lee Seong-Ryong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.387-394
    • /
    • 2005
  • This paper deals with the grid-interactive small battery energy storage system, which aims at the integration o( power quality improvement and demand side management. The main purpose of the proposed system is to achieve the peak power cutting and to compensate the current harmonics and reactive power at the point of installation on power distribution for residential homes. paper deals with the grid-interactive small battery energy storage system, In this paper, the basic principle and control algorithm is analyzed, theoretically and the design methodology of the system is discussed. To verify the proposed system, a comprehensive evaluation with theoretical analysis, simulation and experimental results for 1 KVA load capacity is presented.

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

A Study on Design and Analysis of Module Control Method for Extended Use of Rechargeable Batteries in Mobile Devices (모바일 장치의 충전식 배터리 사용 연장을 위한 모듈 제어 방법 설계와 해석 연구)

  • Dohyeong Kim;jihoon Ryu;JinPyo Jo;JeongHo Kim
    • Journal of Platform Technology
    • /
    • v.12 no.2
    • /
    • pp.34-44
    • /
    • 2024
  • This paper proposes a dynamic clock supply control algorithm and a system load power stabilization algorithm that minimizes the power consumption of the sensing system, which accounts for the largest percentage of power consumption in mobile devices, to extend the usage time of the rechargeable battery mounted on the mobile device. The dynamic clock supply control algorithm can reduce the power consumed by the sensing system by configuring a circuit to cut off the power of the sensing system and by recognizing the state of low sensor change and adjusting the measurement cycle. The system load power stabilization algorithm is an algorithm that controls the power of the surrounding module according to the power consumption state, and when it requires a lot of power, it controls the clock supply to stabilize the operation. The experimental results confirmed that applying only the dynamic clock supply control algorithm reduces the power consumed by the sensing system by 17%, and applying only the system load power stabilization algorithm reduces power consumption by 9.3%, enabling it to operate stably in situations that require a lot of power such as image processing. When both algorithms were applied, the power consumption of the battery was reduced by 67% compared to before applying the algorithm. Through this, the reliability of the proposed method was confirmed.

  • PDF

Energy Efficient Cross Layer Multipath Routing for Image Delivery in Wireless Sensor Networks

  • Rao, Santhosha;Shama, Kumara;Rao, Pavan Kumar
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1347-1360
    • /
    • 2018
  • Owing to limited energy in wireless devices power saving is very critical to prolong the lifetime of the networks. In this regard, we designed a cross-layer optimization mechanism based on power control in which source node broadcasts a Route Request Packet (RREQ) containing information such as node id, image size, end to end bit error rate (BER) and residual battery energy to its neighbor nodes to initiate a multimedia session. Each intermediate node appends its remaining battery energy, link gain, node id and average noise power to the RREQ packet. Upon receiving the RREQ packets, the sink node finds node disjoint paths and calculates the optimal power vectors for each disjoint path using cross layer optimization algorithm. Sink based cross-layer maximal minimal residual energy (MMRE) algorithm finds the number of image packets that can be sent on each path and sends the Route Reply Packet (RREP) to the source on each disjoint path which contains the information such as optimal power vector, remaining battery energy vector and number of packets that can be sent on the path by the source. Simulation results indicate that considerable energy saving can be accomplished with the proposed cross layer power control algorithm.

A Study on the Criteria for Setting the Dynamic Control Mode of Battery Energy Storage System in Power Systems (전력계통 적용을 위한 배터리 에너지저장장치의 동적 제어모드 판단기준에 관한 연구)

  • Han, Jun Bum;U, Garam;Kook, Kyung Soo;Chang, Byunghoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.444-450
    • /
    • 2013
  • This paper presents the criteria for setting the dynamic operating mode of BESS(Battery Energy Storage System) in the bulk power systems. ESS has been expected to improve the degraded dynamic performance of the power system with high penetration of the renewable resources. While ESS is controlled in steady state or dynamic operating mode for its better effectiveness depending on the operating conditions of power systems, the criteria for setting the dynamic operating mode for the transient period needs to be robust enough to cover all the different conditions. The proposed criteria consider the varying conditions and the operating practices of the bulk power systems.

Robust Active Power Control of a Battery-Supported DSTATCOM to Enhance Wind Generation Power Flow

  • Mahdianpoor, Mohammad;Kiyoumarsi, Arash;Ataei, Mohammad;Hooshmand, Rahmat-Allah
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1357-1368
    • /
    • 2017
  • The lack of controllability over the wind causes fluctuations in the output power of the wind generators (WGs) located at the wind farms. Distribution Static Compensator (DSTATCOM) equipped with Battery Energy Storage System (BESS) can significantly smooth these fluctuations by injecting or absorbing appropriate amount of active power, thus, controlling the power flow of WGs. But because of the component aging and thermal drift, its harmonic filter parameters vary, resulting in performance degradation. In this paper, Quantitative Feedback Theory (QFT) is used as a robust control scheme in order to deactivate the effects of filter parameters variations on the wind power generation power smoothing performance. The proposed robust control strategy of the DSTATCOM is successfully applied to a microgrid, including WGs. The simulation results obviously show that the proposed control technique can effectively smooth the fluctuations in the wind turbines' (WT) output power caused by wind speed variations; taking into account the filter parameters variations (structural parameter uncertainties).

Model Development for Analysis of the System Dynamic Characteristics for Fuel Cell-battery Based Unmanned Aerial Vehicles (연료전지-배터리 기반 무인항공기 추진시스템 동특성 분석을 위한 모델 개발)

  • DAEIL HYUN;SEOKMOO HONG;JAEYOUNG HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.490-496
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs) research is recently actively underway. Especially, fuel cell battery hybrid systems are widely used to overcome the limitations of continuous operation. However, fuel cell systems must be operated in combination with a battery due to their low specific output characteristics. Therefore, a hybrid power system model for UAVs is developed. The rule-based strategy is applied to the model to properly distribute power to batteries and fuel cells. As a result, the designed rule-based power distribution control operates UAVs while maintaining battery state of charge(SOC) at an appropriate level.