• Title/Summary/Keyword: Battery Pack Case

Search Result 14, Processing Time 0.021 seconds

Effect of a Lightweight Hull Material and an Electric Propulsion System on Weight Reduction: Application to a 45ft CFRP Electric Yacht (CFRP 선체소재와 전기추진체계가 소형선박의 경량화에 미치는 효과)

  • Oh, Daekyun;Jung, Seungho;Jeong, Sookhyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.818-824
    • /
    • 2018
  • CFRP is often used as lightweight hull material for luxury yachts or special-service ships. An electric propulsion system is also eco-friendly, and has been trialled to equip a small vessel as its main propulsion. In this study, replacing the hull materials and propulsion system with CFRP and electric motors, we made an estimate of the effect of weight reduction and compared it to the original design, for this purpose a case study was conducted on a 45-ft yacht. When redesigning structures with CFRP, we applied the reinforcement content of the carbon fiber in the same way as the original (GC = 0.4), and when changing to the electric propulsion system, we designed motors and battery packs to achieve the same performance as the original. The result showed that CFRP and the electric propulsion system could make the structural and machinery weights 45 % and 58 % lighter, respectively. However, in terms of efficiency, it was confirmed that the electric propulsion system is practically inefficient because it requires a huge amount of battery packs for the same navigation range with diesel engines.

Variation of Material Characteristics of a Hot-formed AZ31 Magnesium Alloy (마그네슘 합금 AZ31의 온간성형과 재료특성변화에 관한 연구)

  • Suh, Chang-Min;Hor, Kwang-Ho;Kim, Hyo-Min;Suh, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.913-919
    • /
    • 2013
  • Magnesium alloys are known to be hard-forming materials at room temperature owing to their material structure. This study analyzes the optimal temperature conditions of warm-forming and the forming process by using a high-pressure laminating test and FM analysis, respectively. The effect of temperature on the fatigue limit was examined from the collected specimens by analyzing the material properties after the fatigue test. The material formed at a temperature of $230^{\circ}C$ shows occasional defects, but the best forming quality was obtained at $270^{\circ}C$. The optimal temperature for the forming process was found to be $250^{\circ}C$ considering the material quality and thermal efficiency. The overall fatigue life of specimens decreases with an increase in the processing temperature. The fatigue limit of AZ31 formed at $250^{\circ}C$ was approximately 100 MPa after $10^6$ cycles.

Corrosion Resistance of Al6061-T6 by Organic/Inorganic Hybrid Coating Solution (유/무기하이브리드 코팅액에 의한 Al6061-T6의 내식 특성)

  • Mi-Hyang Park;Ki-Hang Shin;Byoung-Chul Choi;Byung-Hyun Ahn;Gum-Hwa Lee;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.591-598
    • /
    • 2023
  • In this study, the corrosion resistance by salt spray was evaluated using A6061-T6 for an electric vehicle battery pack case coated with an organic/inorganic hybrid solution. The lowest curing temperature of 190 ℃ resulted in significant corrosion and pitting. Meanwhile, no corrosion was observed in the coated specimens at 210 ℃ and 230 ℃ except at 210 ℃ - 6 min and 8 min. The surface of the as-received coating specimen observed by FE-SEM exhibited streaks and dents in the rolling direction, but the coating surface was clean. On the 190 ℃ - 6 min coating specimen, which had a lot of corrosion, rolling streaks spread, and dents were caused by corrosion. The 200 ℃ - 12 min coating specimen did not show corrosion, but it showed an etched surface. In the line profile, Si, the main component of the coating solution, was detected the most, and Ti was also detected. In the coating specimens with salt spray, O increased and Si decreased, regardless of corrosion. The peeling rate by adhesion evaluation was 26 - 87% for the 190 ℃ coating specimen, 4 - 83% for the 210 ℃ coating specimen, and 94 - 100% for the 230 ℃ coating specimen. The optimal curing conditions for the coating solution used in this study were 210 ℃ for 10 min.

An Experiment Study on Electric Vehicle Fire and Fire Response Procedures (전기차 화재 실험 및 대응방안에 관한 연구)

  • Ki-Hun Nam;Jun-Sik Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2024
  • Lithium-ion batteries (LIB) are widely used in various sectors, such as transportation (e.g., electric vehicles (EV)) and energy (e.g., energy storage facilities) due to their high energy density, broad operating temperature (-20 ℃ ~ 60 ℃), and high capacities. LIBs are powerful but fragile on external factors, including pressure, physical damage, overheating, and overcharging, that cause thermal runaway causing fires and explosions. During a LIB fire, a large amount of oxygen is generated from the decomposition of ionogenic materials. A water fire extinguisher that helps with cooling and suffocating must be essentially required at the same time. In fact, however, it is difficult to suppress LIB fires in the case of EVs because a LIB is installed with a battery pack housing that interrupts direct extinguishing by water. Thus, this study aims to investigate effective fire extinguishing measurements for LIB fires by using an EV. Relevant documents, including research articles and reports, were reviewed to identify effective ways of LIBs fire extinguishing. A real-scale fire experiment generating thermal runaway was carried out to figure out the combustion characteristics of EVs. This study revealed that the most effective fire extinguishing measurements for LIB fires are applying fire blankets and water tanks. However, there is still a lack of adequate regulation and guidelines for LIB fire extinguishment. Taking this into account, developing functional fire extinguishment measurements and available regulatory instruments is an urgent issue to secure the safety of firefighters and citizens.