• Title/Summary/Keyword: Battery Energy Storage Systems (BESSs)

Search Result 7, Processing Time 0.018 seconds

An Economic Assessment of Large-scale Battery Energy Storage Systems in the Energy-Shift Application to Korea Power System (장주기 대용량 전력저장장치의 부하이전에 대한 실계통 적용 경제성 평가 연구)

  • Park, Jong-Bae;Park, Yong-Gi;Roh, Jae-Hyung;Chang, Byung-Hoon;Toon, Yong-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.384-392
    • /
    • 2015
  • This paper presents an economic assessment of large-scale Li-ion battery energy storage systems applied to Korean power system. There are many applications of the battery energy storage systems (BESSs) and they can provide various benefits to power systems. We consider BESSs to the energy time-shift application to Korean power system and evaluate the benefits from the application of BESS in the social perspective. The mixed integer programming (MIP) algorithm is used to resolve the optimal operation schedule of the BESS. The social benefits can include the savings of the fuel cost from generating units, deferral effects of the generation capacity, delay of transmission and distribution infra construction, and incremental CO2 emission cost impacts, etc. The economic evaluation of the BESS is separately applied into Korean power systems of the Main-land and Jeju island to reflect the differences of the load and generation patterns.

Fuzzy Droop Control considering SOC Balancing of BESSs (다수 BESS의 SOC Balancing을 고려한 퍼지 드룹 제어)

  • Han, Seong-Geun;Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.616-622
    • /
    • 2015
  • A microgrid which is composed of distributed generation systems, energy storage systems and loads is operated in the grid-connected mode and in the islanded mode. Especially, in the islanded mode, a microgrid should maintain frequency in the allowed range. The frequency is decided by a balance between power supply and power demand. In general, the frequency is controlled by using battery energy storage systems (BESSs) in the microgrid. Especially, droop control is applied to controlling BESSs in the microgrid. Meanwhile, over-charging and deep-discharging of BESS in operation and control cause life-shortening of batteries. In this paper, a fuzzy droop control is proposed to change droop gains adaptively by considering state of charge (SOC) of BESSs to improve the life cycle of the battery. The proposed fuzzy droop control adjusts droop gains based on SOC of BESSs in real time. In other to show the performance of the proposed fuzzy droop control, simulation based on Matlab/Simulink is performed. In addition, comparison of the convention droop control and the proposed fuzzy droop control is also performed.

Voltage and Frequency Control Method Using Battery Energy Storage System for a Stand-alone Microgrid (배터리 에너지 저장장치를 이용한 독립형 마이크로그리드의 전압 및 주파수 제어)

  • Kim, Sang-Hyuk;Chung, Il-Yop;Lee, Hak-Joo;Chae, Woo-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1168-1179
    • /
    • 2015
  • This paper presents voltage and frequency control methods for a stand-alone Gasa Island Microgrid in South Korea that can be fully energized by renewable energy resources such as photovoltaic systems and wind turbines. To mitigate the variations of the output of renewable energy resources and supply more reliable electricity to customers, battery energy storage systems (BESSs) are employed in the stand-alone microgrid. The coordination between BESSs and pre-existing diesel generators is an important issue to manage the microgrid more securely. This paper presents voltage and frequency control schemes considering the coordination of BESSs and DGs. The effectiveness for the operating method is validated via simulation studies.

Design of Coordinated Frequency Control Strategy applied to EDLC and BESSs for Microgrid in the Islanded Mode (독립운전 모드의 마이크로그리드에서 EDLC와 BESS의 주파수 협조제어전략 설계)

  • Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.820-827
    • /
    • 2014
  • Since a microgrid has renewable energy sources, imbalance between power supply and power demand occurs in the islanded mode. In order to solve the imbalance, several energy storage systems (ESSs) such as bettary energy storage system (BESS), EDLC (electric double layer capacitor), flywheel, and SMES (superconducting magnetic energy storage) are generally used. Especially, their electrical characteristics are different. For efficient use of them, a coordinated control scheme is required. In this paper, a coordinated control scheme for using a Lead-acid BESS, a Lithium BESS, and a EDLC is designed to efficient frequency control for a microgrid in the islanded mode. The coordinated frequency control strategy is designed based on their electrical characteristics. The feasibility of the proposed coordinated frequency control strategy is verified through the simulation.

Power Stabilization of Wind Farms in Jeju Island with BESS (BESS에 의한 제주지역 풍력발전단지의 출력 안정화)

  • Jin, Kyung-Min;Kim, DongWan;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.134-135
    • /
    • 2012
  • This paper analyzes the characteristics of the power system of Jeju island in 2014, which has wind farms with the support of BESSs (Battery Energy Storage Systems). In the simulation, the electrical loads are predicted based on Korea Power Exchange's data and the wind turbines are considered with new installed plans within 2014. The situation that some wind farms are forced to disconnect from the grid instantaneously is considered. The BESSs are controlled by using SOC (State of Charge) and power smoothing control algorithm. The simulation results show the effectiveness of the proposed method.

  • PDF

Coordinated Voltage Control Scheme for Multi-Terminal Low-Voltage DC Distribution System

  • Trinh, Phi Hai;Chung, Il-Yop;Kim, Taehoon;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1459-1473
    • /
    • 2018
  • This paper focuses on voltage control schemes for multi-terminal low-voltage direct current (LVDC) distribution systems. In a multi-terminal LVDC distribution system, there can be multiple AC/DC converters that connect the LVDC distribution system to the AC grids. This configuration can provide enhanced reliability, grid-supporting functionality, and higher efficiency. The main applications of multi-terminal LVDC distribution systems include flexible power exchange between multiple power grids and integration of distributed energy resources (DERs) using DC voltages such as photovoltaics (PVs) and battery energy storage systems (BESSs). In multi-terminal LVDC distribution systems, voltage regulation is one of the most important issues for maintaining the electric power balance between demand and supply and providing high power quality to end customers. This paper focuses on a voltage control method for multi-terminal LVDC distribution system that can efficiently coordinate multiple control units, such as AC/DC converters, PVs and BESSs. In this paper, a control hierarchy is defined for undervoltage (UV) and overvoltage (OV) problems in LVDC distribution systems based on the control priority between the control units. This paper also proposes methods to determine accurate control commands for AC/DC converters and DERs. By using the proposed method, we can effectively maintain the line voltages in multi-terminal LVDC distribution systems in the normal range. The performance of the proposed voltage control method is evaluated by case studies.

Intelligent Coordination Method of Multiple Distributed Resources for Harmonic Current Compensation in a Microgrid

  • Kang, Hyun-Koo;Yoo, Choel-Hee;Chung, Il-Yop;Won, Dong-Jun;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.834-844
    • /
    • 2012
  • Nonlinear electronic loads draw harmonic currents from the power grids that can cause energy loss, miss-operation of power equipment, and other serious problems in the power grids. This paper proposes a harmonic compensation method using multiple distributed resources (DRs) such as small distributed generators (DGs) and battery energy storage systems (BESSs) that are integrated to the power grids through power inverters. For harmonic compensation, DRs should inject additional apparent power to the grids so that certain DRs, especially operated in proximity to their rated power, may possibly reach their maximum current limits. Therefore, intelligent coordination methods of multiple DRs are required for efficient harmonic current compensation considering the power margins of DRs, energy cost, and the battery state-of-charge. The proposed method is based on fuzzy multi-objective optimization so that DRs can cooperate with other DRs to eliminate harmonic currents with optimizing mutually conflicting multi-objectives.