• Title/Summary/Keyword: Battery Electrical Model

Search Result 219, Processing Time 0.023 seconds

Integrated Control Algorithm of Hydraulic Pump with Electric Motor to Improve Energy Efficiency of Electric Excavator (전기굴삭기 에너지 효율 향상을 위한 유압펌프-전동기 통합 제어 알고리즘)

  • Lee, Jeeho;Lee, Jihye;Lee, Hyeongcheol;Oh, Chang Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • An electric excavator consumes battery energy to drive an electric motor attached to a hydraulic pump to generate hydraulic power. In a conventional hydraulic excavator, the hydraulic pump is controlled by regulators, which are used to optimize the diesel engine efficiency. Because of a lack of battery energy capacity, an electric excavator controller should consider not only the electric motor efficiency but also the hydraulic pump efficiency. Thus, electric motor and hydraulic pump efficiency maps were constructed. An optimal operating map (OOM) was created based on the most efficient operating points under each input condition. An integrated control algorithm controlled the speed of the electric motor and displacement of the hydraulic pump according to the OOM. To confirm the utility of this algorithm, a model-in-the-loop simulator for the algorithm with an electric excavator was established. The simulation results showed that the integrated control algorithm improved the energy efficiency of an electric excavator.

Synchronous Buck Converter with High Efficiency and Low Ripple Voltage for Mobile Applications (고 효율 저 리플 전압 특성을 갖는 모바일용 동기 형 벅 컨버터)

  • Yim, Chang-Jong;Kim, Jun-Sik;Park, Shi-Hong
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.319-323
    • /
    • 2011
  • In this paper presents a new model of dual-mode synchronous buck converter with dynamic control for mobile applications was proposed. The proposed circuit can operate at 2.5MHz with supply voltage 2.5V to 5V for low ripple and minimum inductor and capacitor size, which is suitable for single-cell lithium-ion battery supply mobile applications. For high efficiency, the proposed circuit adopts synchronous type and dynamic control. The proposed circuit is designed by using the device parameter of TSMC 0.18um BCD process and the performance is evaluated by Cadence spectre. Experimental board level results show the maximum conversion efficiency is 96% at 100mA load current.

State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter (이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정)

  • Hong-Ryun Jung;Jun Ho Kim;Seung Woo Kim;Jong Hoon Kim;Eun Jin Kang;Jeong Woo Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Along with the high interest in electric vehicles and new renewable energy, there is a growing demand to apply lithium-ion batteries in the construction equipment industry. The capacity of heavy construction equipment that performs various tasks at construction sites is rapidly decreasing. Therefore, it is essential to accurately predict the state of batteries such as SOC (State of Charge) and SOH (State of Health). In this paper, the errors between actual electrochemical measurement data and estimated data were compared using the Dual Extended Kalman Filter (DEKF) algorithm that can estimate SOC and SOH at the same time. The prediction of battery charge state was analyzed by measuring OCV at SOC 5% intervals under 0.2C-rate conditions after the battery cell was fully charged, and the degradation state of the battery was predicted after 50 cycles of aging tests under various C-rate (0.2, 0.3, 0.5, 1.0, 1.5C rate) conditions. It was confirmed that the SOC and SOH estimation errors using DEKF tended to increase as the C-rate increased. It was confirmed that the SOC estimation using DEKF showed less than 6% at 0.2, 0.5, and 1C-rate. In addition, it was confirmed that the SOH estimation results showed good performance within the maximum error of 1.0% and 1.3% at 0.2 and 0.3C-rate, respectively. Also, it was confirmed that the estimation error also increased from 1.5% to 2% as the C-rate increased from 0.5 to 1.5C-rate. However, this result shows that all SOH estimation results using DEKF were excellent within about 2%.

Lightweight Model for Energy Storage System Remaining Useful Lifetime Estimation (ESS 잔존수명 추정 모델 경량화 연구)

  • Yu, Jung-Un;Park, Sung-Won;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.436-442
    • /
    • 2020
  • ESS(energy storage system) has recently become an important power source in various areas due to increased renewable energy resources. The more ESS is used, the less the effective capacity of the ESS. Therefore, it is important to manage the remaining useful lifetime(RUL). RUL can be checked regularly by inspectors, but it is common to be monitored and estimated by an automated monitoring system. The accurate state estimation is important to ESS operator for economical and efficient operation. RUL estimation model usually requires complex mathematical calculations consisting of cycle aging and calendar aging that are caused by the operation frequency and over time, respectively. A lightweight RUL estimation model is required to be embedded in low-performance processors that are installed on ESS. In this paper, a lightweight ESS RUL estimation model is proposed to operate on low-performance micro-processors. The simulation results show less than 1% errors compared to the original RUL model case. In addition, a performance analysis is conducted based on ATmega 328. The results show 76.8 to 78.3 % of computational time reduction.

A Study on the Power Characteristics Analysis of Electric Motorcycle (전기 이륜차 동력 특성해석에 관한 연구)

  • Choi, Jin-Kwon;Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5156-5163
    • /
    • 2011
  • Electric Motorcycle is one of the most promising candidates for future transportation because of its outstanding fuel economy and environmental pollution. Before prototyping a realistic electric motorcycle, a reliable simulation program is required to test the capacities of the power sources and optimize the parameters of an electric motorcycle. This process can reduce the expenses during the designing of an electric motorcycle system. In this paper, we present an electric motorcycle system simulation program implemented on Matlab, which can model drivetrain and powertrain systems in an easy, natural way within Simulink and PSAT. And the analysis of design parameters such as max power, capacity, state of charge, slope angle is carried out by the simulation and experimental method. The predicted results by the development model were a good agreement with experimentally obtained results.

Modeling and Dynamic Analysis for Electric Vehicle Powertrain Systems (전기 자동차 파워트레인의 모델링 및 동특성 분석)

  • Park, Gwang-Min;Lee, Seong-Hun;Jin, Sung-Ho;Kwak, Sang-Shin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.71-81
    • /
    • 2011
  • Unlike a typical internal combustion engine vehicle, the powertrain system of the pure electric vehicle, consisting of battery, inverter and motor, has direct effects on the vehicle performance and dynamics. Then, the specific modeling of such complex electro-mechanical components enables the insight into the longitudinal dynamic outputs of the vehicle and analysis of entire powertrain systems. This paper presents the dynamic model of electric vehicle powertrain systems based on theoretical approaches to predict and analyze the final output performance of electric vehicles. Additionally, the correlations between electric input signals and the final output of the mechanical system are mathematically derived. The proposed model for powertrain dynamics of electric vehicle systems are validated with a reference electric vehicle model using generic simulation platform based on Matlab/Simulink software. Consequently, the dynamic analysis results are compared with electric vehicle simulation model in some parameters such as vehicle speed/acceleration, and propulsion forces.

A Study on Characteristics and Modeling of CMV by Grounding Methods of Transformer for ESS (ESS용 변압기의 접지방식에 의한 CMV 모델링 및 특성에 관한 연구)

  • Choi, Sung-Moon;Kim, Seung-Ho;Kim, Mi-Young;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.587-593
    • /
    • 2021
  • Since 2017, a total of 29 fire accidents have occurred in energy storage systems (ESSs) as of June 2020. The common mode voltage (CMV) is one of the electrical hazards that is assumed to be a cause of those fire accidents. Several cases of CMV that violate the allowable insulation level of a battery section are being reported in actual ESS operation sites with △-Y winding connections. Thus, this paper evaluates the characteristics of CMV. An ESS site was modeled with an AC grid, PCS, and battery sections using PSCAD/EMTDC software. As a result of a simulation based on the proposed model, it was confirmed that characteristics of CMV vary significantly and are similar to actual measurements, depending on the grounding method of the internal transformer for PCS. The insulation level of the battery section may be severely degraded as the value of CMV exceeds the rated voltage in case of a grounding connection. It was found that the value of CMV dramatically declines when the internal transformer for PCS is operated as non-grounding connection, so it meets the standard insulation level.

Kinetic Parameter Analysis of Hydrogen Diffusion Reaction for Hydrogen Storage Alloy of Fuel Cell System (연료전지의 수소저장용 합금에 대한 수소확산반응의 속도론적 해석)

  • Kim, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.45-49
    • /
    • 2006
  • Electrochemical hydrogenation/dehydrogenation properties were studied for a single particle of a Mm-based(Mm : minh metal) hydrogen storage alloy($MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$) for fuel cell and Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and the potential-step experiment was carried out to determine the apparent chemical diffusion coefficient of hydrogen atom($D_{app}$) in the alloy. Since the alloy particle we used here was a dense, conductive sphere, the spherical diffusion model was employed for data analysis. $D_{app}$ was found to vary the order between $10^{-9}\;and\;10^{-10}[cm^2/s]$ over the course of hydrogenation and dehydrogenation process. Compared with the conventional composite film electrodes, the single particle measurements using the microelectrode gave more detailed, true information about the hydrogen storage alloy.

A Study on the Optimal Resource Configuration Considering Load Characteristics of Electric Vehicles in Micro Grid Environment (전기자동차 부하 특성을 고려한 마이크로그리드의 최적 전원 구성에 관한 연구)

  • Hwang, Sung-Wook;Chae, Woo-Kyu;Lee, Hak-Ju;Yun, Sang-Yun;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.228-231
    • /
    • 2015
  • In power system research fields, one of current key issues is the construction and commercialization of micro grid site which is called green island, carbon zero island, energy independent island, building micro grid, etc. and various affiliated technologies have been being vigorously developed to realize. In addition, various researches about electric vehicles (EVs) are in progress and it is expected to penetrate rapidly with the next a few years. Some new load models should be developed integrating with electric vehicle loads because the EVs' deployment could cause the change of load composition rate on power system planning and operations. EVs are also resources for micro grid as well as distributed generation and demand response so that various supply and demand side resources should be considered for micro grid researches. In this paper, the load composition rate of residential sectors is prospected considering the deployment of EVs and the resource configuration of micro grid is optimized based on net present cost. In the optimization, the load patten of case studies includes EV's charging characteristics and various cases are simulated comparing micro grid environment and normal condition. HOMER is used to compare various cases and economic effects.

Analysis of Fuel Economy for a 42-volt ISG Vehicle Using Performance Simulator (42-volt ISG 차량의 성능 시뮬레이터를 이용한 연비성능 분석)

  • Kim Jeongmin;Oh Kyoungcheol;Lee aeho;Kim Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • In this paper, an operation algorithm and a performance simulator are developed for a 42-volt ISG vehiclewhich consists of 5 kW ISG, 2500cc IC engine, torque converter and 4 speed automatic transmission. Modularapproach using MATLAB Simulink is used to construct a dynamic model of the vehicle powertrain which is obtainedfrom each component such as engine, battery, ISG, torque converter, etc.. An operation strategy for a 42-volt ISG vehicle including the function such as engine idle stop and regenerative braking is proposed. Performance simulator is developed based on the dynamic models of the powertrain. It is found from the simulation results that fuel economy can be improved as much as 6 percent for FTP75 driving cycle mostly owing to the engine idle stop.