• 제목/요약/키워드: Battery Electric Vehicle

검색결과 542건 처리시간 0.036초

경제성을 고려한 전기자동차 충전시스템과 배터리 교체형 시스템의 비교분석 연구 (A Study of Comparing and Analyzing Electric Vehicle Battery Charging System and Replaceable Battery System by Considering Economic Analysis)

  • 김시연;황재동;임종훈;송경빈
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1242-1248
    • /
    • 2012
  • Electric vehicle usage is currently very low, but it will be increase with development of electric vehicle technology and a good government policy. Moreover in 2020, advanced electric vehicle manufacturing system will give high performance for its price and mass production. Electric vehicle will become widespread in Korea. From an operational and a planned viewpoint, the electric power demand should be considered in relation to diffusion of electric vehicles. This paper presents the impact of the various battery charge systems. A comparison is performed for electric vehicle charging methods such as, normal charging, fast charging, and battery swapping. In addition, economic evaluation for the replaceable battery system and the quick battery charging system is performed through basic information about charging Infrastructure installation cost. The results of the evaluation show that replaceable battery system is more economical and reliable in side of electric power demand than quick battery charging system.

전기자동차 배터리 트레이 내에서의 열전달 해석 (Heat transfer analysis in the battery tray for electirc vehicle)

  • 임종수;신동신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.651-654
    • /
    • 2002
  • Study of electric vehicle is popular with automobile company. However, battery cooling problem has delayed development of electric vehicle. Lifetime of electric vehicle's battery depends on the cooling effect for the battery tray. One model was simulated by 3-D, steady state, incompressible, k-e turbulent model simulation. It is found that flow inlet, outlet and inlet position are very important design parameters.

  • PDF

전기자동차 시스템 모델링 및 주행 환경에 따른 배터리 응답 특성 연구 (Battery Response Characteristics According to System Modeling and Driving Environment of Electric Vehicles)

  • 추용주;박준영;박광민;이승엽
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.85-92
    • /
    • 2022
  • Currently, various researches on electric vehicle battery systems have been conducted from the viewpoint of safety and performance for SoC, SoH, etc. However, it is difficult to build a precise electrical model of a battery system based on the chemical reaction and SoC prediction. Experimental measurements and predictions of the battery SoC were usually performed using dynamometers. In this paper, we construct a simulation model of an electric vehicle system using Matlab Simulink, and confirm the response characteristics based on the vehicle test driving profiles. In addition, we show that it is possible to derive the correlation between the SoC, voltage, and current of the battery according to the driving time of the electric vehicle in conjunction with the BMS model.

태양광 발전을 이용한 전기자동차 배터리 충전 및 공급시스템에 관한 연구 (A Study on Battery Charging and Supply System of Electric Vehicle Using Photovoltaic Generation)

  • 최회균
    • 한국기후변화학회지
    • /
    • 제8권3호
    • /
    • pp.265-273
    • /
    • 2017
  • Recently the Paris Climate Change Accord has been officially put into effect, making global efforts to implement Greenhouse Gas (GHG) reductions, and also International environmental regulations in the automotive sector will be further strengthened. The electric vehicle, which minimizes the particulate matter generated by existing internal combustion engine automobiles, is evaluated as a representative eco-friendly automobile. However, charging the battery of an electric vehicle is not fully environment-friendly if it is fueled by electricity that is being generated by fossil fuels as an energy source. The energy generated by the photovoltaic power generation system, which is an infinite clean energy, can be used to charge an electric vehicle's battery. Currently, shortage of charging facilities, time of charging, and high battery prices are the problem of activating the supply of electric vehicles. This study is to build a conjunction between the EVBSS (Electric Vehicle Battery Supply System) and ESS (Energy Storage System), which can quickly supply the photovoltaic charged battery to the required demand. If the charged battery in the Battery Swapping Station (BSS) is swapped swiftly, it will dramatically shorten the waiting time for charging the battery. As a result, if the battery is rented when it is needed, electric vehicles can be sold without the cost of a battery, which accounts for a large portion of the total cost, then the supply of electric vehicles are expected to expand. Furthermore, it will be an important alternative to maneuver climate change by minimizing GHG emissions from internal combustion engine vehicles.

하이브리드 전기자동차용 배터리 ECU 개발 (Development of the Battery ECU for Hybrid Electric Vehicle)

  • 남종하;최진흥;김승종;김재웅
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.740-744
    • /
    • 2003
  • The development of electric vehicle has been accelerated by the recent 'California Initiative' which has required increasing proportions of new vehicle in Los Angeles area to be ZEV(Zero Emission Vehicles) But, because skill of battery is feeble, ZEV regulation was postponed but that is by CO2 restriction and environmental pollution problem the latest because do development require. In the electric vehicle and hybrid electric vehicle, the battery ECU(Battery Management System, BMS) is very important and an essential equipment. The accurate state of charge(SOC) is required for the battery for hybrid electric vehicles. This paper proposes SOC algorithm for the HEV based on the terminal voltage. Also, designed and analyzed battery ECU to apply on HEV.

  • PDF

전기 자동차 가상 플랫폼용 배터리 모델 개발 및 검증 (Development of a Battery Model for Electric Vehicle Virtual Platform)

  • 김선우;조종민;한재영;김성수;차한주;유상석
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.486-493
    • /
    • 2015
  • In this paper, a battery model for electric vehicle virtual platform was developed. A battery model consisted of a battery cell model and battery thermal management system. A battery cell model was developed based on Randles equivalent circuit model. Circuit parameters in the form of 3D map data was obtained by charge-discharge experiment of Li-Polymer battery in various temperature condition. The developed battery cell model was experimentally verified by comparing voltages. Thermal management system model was also developed using heat generator, heat transfer and convection model, and cooling fan. For verification of the developed battery model in vehicle level, the integrated battery model was applied in to EV(electric vehicle) virtual platform, and virtual driving simulation using UDDS velocity profile was conducted. The accuracy of the developed battery model has been verified by comparing the simulation results from EV platform with the experimental data.

BDU 신뢰성 검증 (Reliability Verification of Battery Disconnecting Unit)

  • 윤혜림;유행수;박지홍;박홍태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.866-867
    • /
    • 2011
  • As part of the green growth, The Green Car has attracted wide attention. Types of the Green Car are Electric Vehicle, Plug-in Hybrid Electric Vehicle, Hybrid Electric Vehicle, Fuel Cell Vehicle and Clean Diesel Vehicle. Of these, The electric vehicle is equipped with the BDU(Battery Disconnecting Unit). BDU is supplying stable battery power and blocking it to protect electrical system of the electric vehicle. The BDU consists of electric components such as current sensor, fuse and pre-charge resistor. These must pass Voltage withstand test, Salt mist test, Thermal shock test, Vibration test and Short-circuit test commonly to verify reliability of the electric components. In addition, The current sensor should be verified whether normal operation. The breaking capacity of fuse should be verified. The durability of pre-charge resistor should be verified by supplying battery power and blocking it repeatedly. The reliability of BDU as well as the electric vehicle is secured by verifying the reliability of electric components. In addition, It will contribute to the acceleration and promotion of Green Car Technology.

  • PDF

자동차 전력 시스템의 전기적 등가회로 모델 개발에 관한 연구 (A study on a Development of Electric Equivalent Circuit Models of Vehicle Electric Power System)

  • 최대호;이재인;선우명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.669-671
    • /
    • 2000
  • Vehicle electric power system, which consists of two major components; an alternator and a battery, supplies electric power to vehicle electric and electronic systems. In recent years, bigger power supply is required for the rapid demand of the number of vehicle electric and electronic systems. It is important that vehicle power system should be analyzed exactly. For the simulation of vehicle electric power system, appropriate component model of vehicle electric power system should be chosen. In this paper, a simplified and accurate battery model is developed to obtain the battery parameters, and a Variable Alternator Terminal Voltage Model is introduced to described an alternator. The case study shows that simulation results using the suggested models are well agreed with the experiments.

  • PDF

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

전력망 충전식 전기자동차의 영향 및 에너지비용 (Potential Impacts and Energy Cost of Grid-Connected Plug-in Electric Vehicles)

  • 이경호;한승호
    • 에너지공학
    • /
    • 제19권2호
    • /
    • pp.92-102
    • /
    • 2010
  • 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)는 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV)의 일종으로, 배터리 용량을 HEV보다 더욱 증대시키고 배터리의 충전을 전력망으로부터 할 수 있도록 한 자동차이며, 순수 배터리 전기자동차(Plug-in Battery Electric Vehicle, PBEV)는 전력망으로부터 전기를 배터리에 충전하여 저장하고 배터리에 저장된 전기만을 이용하여 운전가능한 자동차이다. 최근에 PHEV와 PBEV에 대한 관심과 개발이 전세계적으로 급속하게 증가하고 있다. 그러므로 이들 전력망 충전식 전기자동차가 전력망의 전력수요에 미치는 영향을 검토하는 것이 중요하다. 본 논문에서는 이들 PHEV와 PBEV 자동차의 보급으로 전력망의 전력수요, 이산화탄소 배출량과 차량구매자의 관점에서 운전비용에 미치는 영향을 분석하였다. 2020년경에 차량보급이 10%정도로 이루어질 것을 가정하여 영향을 분석하였다.