• Title/Summary/Keyword: Basin Division

Search Result 550, Processing Time 0.031 seconds

Geology and Mineralization of the Iscaycruz Pb-Zn-Cu Project, Central Peru (페루 중부 이스카이크루즈 연-아연-동 프로젝트의 지질 및 광화작용)

  • Heo, Chul-Ho;Nam, Hyeong-Tae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • The geology of the Iskaycruz project are mainly composed of sedimentary rocks within Cretaceous basin. The basal part is composed up of dark-gray shale, gray sandstone, and clastic rock of Oyon formation interbedded with coal measures. In the folded zone in the eastern part of the survey area, there is Chimu formation that has medium-grained massive and white quarztite. In terms of geological structure, the Iskaykruz region is located in the folded and overthrust zones of the central part of the Occidental Mountains. Ore body was formed by hydrothermal replacement process and consists of zinc, lead, silver, and copper. Stratabound-type deposits are hosted in limestone of Santa formation. It extends 12 kilometers discontinuously from northern Canaypata to southern Antapampa. Irregular iron oxide and sulfide minerals hosted in Santa and Parihuanca formations are observed. The mineralization observed on the surface consist of primary sulfides consisting of sphalerite with galena and chalcopyrite, and iron and manganese oxide produced from oxidation of primary sulfides. Skarn minerals are accompanied by tremolite, garnet, epidote and quartz.

Waterbody Detection Using UNet-based Sentinel-1 SAR Image: For the Seom-jin River Basin (UNet기반 Sentinel-1 SAR영상을 이용한 수체탐지: 섬진강유역 대상으로)

  • Lee, Doi;Park, Soryeon;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.901-912
    • /
    • 2022
  • The frequency of disasters is increasing due to global climate change, and unusual heavy rains and rainy seasons are occurring in Korea. Periodic monitoring and rapid detection are important because these weather conditions can lead to drought and flooding, causing secondary damage. Although research using optical images is continuously being conducted to determine the waterbody, there is a limitation in that it is difficult to detect due to the influence of clouds in order to detect floods that accompany heavy rain. Therefore, there is a need for research using synthetic aperture radar (SAR) that can be observed regardless of day or night in all weather. In this study, using Sentinel-1 SAR images that can be collected in near-real time as open data, the UNet model among deep learning algorithms that have recently been used in various fields was applied. In previous studies, waterbody detection studies using SAR images and deep learning algorithms are being conducted, but only a small number of studies have been conducted in Korea. In this study, to determine the applicability of deep learning of SAR images, UNet and the existing algorithm thresholding method were compared, and five indices and Sentinel-2 normalized difference water index (NDWI) were evaluated. As a result of evaluating the accuracy with intersect of union (IoU), it was confirmed that UNet has high accuracy with 0.894 for UNet and 0.699 for threshold method. Through this study, the applicability of deep learning-based SAR images was confirmed, and if high-resolution SAR images and deep learning algorithms are applied, it is expected that periodic and accurate waterbody change detection will be possible in Korea.

The Study of Pore Structure in Shale Gas Reservoir Using Large-area Particle Measurement Method (대면적 입자 측정 분석법을 이용한 셰일 가스 저류층 내공극 구조 연구)

  • Park, Sun Young;Ko, Yong-kyu;Choi, Jiyoung;Lee, Junhee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.209-218
    • /
    • 2021
  • Studies of pore structure in shale gas reservoirs are essential to increase recovery rates, which is in the spotlight concerning unconventional resources. In this study, the distribution of pores in shale gas reservoir sample were observed using Scanning Electron Microscope Particle Analysis (SELPA), which is appropriate to analyze the distribution of particle or shape for sample in large area. A sample from the A-068 borehole drilled in the Liard Basin was analyzed; calcite is the main mineral. The pore size ranges from tens of nanometers to hundreds of micrometers and the contribution of each pore size to overall sample porosity was determined using SELPA. The distribution of pores was determined by observing the surface in the same area at magnifications of ×1000, ×3000 and ×5000. Pores less than 100 nm were observed at high magnifications and confirm that small-scale pore distribution can be analyzed and identified rapidly using SELPA. The method introduced in this study will be useful to understand pore structures in unconventional reservoirs.

High Remineralization and Denitrification Activity in the Shelf Sediments of Dok Island, East Sea (동해 독도 사면 퇴적물의 높은 재광물화와 탈질소화)

  • Jeong, Jin-Hyun;Kim, Dong-Seon;Lee, Tae-Hee;An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.80-89
    • /
    • 2009
  • The rates of sediment oxygen demand(SOD) and denitrification(DNF) were measured using $^{15}N$ isotope pairing technique in intact sediment cores in the shelf of Dok Island. The SOD and DNF in the continental shelf of Dok Island were ranged from 1.04 to $9.08\;mmol\;m^{-2}\;d^{-1}$ and from 7.06 to $37.67\;{\mu}mol\;m^{-2}\;d^{-1}$, respectively. The SOD and DNF values in this study are higher than typical deep sea sediment. The SOD and DNF in this study were high in the high organic matter content sediment and high organic matter content was promotive of coupled nitrification-denitrification. Organic carbon contents in surface sediment ranged from 1.8 to 2.4%, which is higher than typical deep sea sediments. Therefore we conclude that the organic matter content in surface sediment is determined by the nature of the export production not the water depth in East sea sediment and the nature of the export production also determines remineralization processes such as SOD and DNF in East sea/Ulleung Basin sediment.

Correlation of Nonpoint Pollutant and Particulate Matters at a Small Suburban Area (비시가화지역에서 비점오염물질과 입자성물질의 유출 상관성)

  • Park, Ji-Young;Bae, Sang-Ho;Yoon, Young-H.;Lim, Hyun-Man;Park, Jae-Roh;Oh, Hyun-Je;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.720-728
    • /
    • 2012
  • In general, nonpoint pollutant of a watershed is drained out in the form of storm water runoff during rainfall events. As the bulk of the nonpoint pollutant is in adsorbed form on particulate matters, in order to understand the behavior of nonpoint pollutant it is essential to grasp the characteristics of particulate matters in rainfall runoff. Though, previous studies for the relationship between the runoff characteristics of pollutants and the size distribution of particulate matters are very rare. In this study, a small non-urbanized area (basin area of 52.8 ha) with various landuse types including paddy, dry fields and forest was selected and investigated in detail for the runoff properties of each pollutant during several rainfall events. The correlation and effects between particulate matters and nonpoint pollutant were analyzed quantitatively. As a result, the significant first flush was observed on each event and it became clear that fine particulate matters ($80{\mu}m$ or less) has contributed in the runoff process of nutrients and heavy metals. Organic matters ($BOD_5$, TOC), nutrients (TN, TP) and several heavy metals (Al, Cr, Cu, Fe, Hg and Zn) represented high correlations with SS (total), VSS, SS (d < $20{\mu}m$) and SS ($20{\mu}m$ $$\leq_-$$ d < $80{\mu}m$). On the other hand, $COD_{cr}$, Cd, Mn and Pb did not show clear correlations with the behavior of particulate matters. Therefore, we have to examine the introduction of nonpoint pollution mitigation facilities considering the facts that nonpoint pollutant runoff process has high correlation with the behavior of particulate matters and is changeable based on the target pollutants.

Evaluation of near-realtime weekly root-zone Soil Moisture Index (SMI) for the extreme climate monitoring web-service across East Asia (동아시아 이상기후 감시 서비스를 위한 지면모형 기반 준실시간 토양수분지수평가)

  • Chun, Jong Ahn;Lee, Eunjeong;Kim, Daeha;Kim, Seon Tae;Lee, Woo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.409-416
    • /
    • 2020
  • An extreme climate monitoring is essential to the reduction of socioeconomic damages from extreme events. The objective of this study was to produce the near-realtime weekly root-zone Soil Moisture Index (SMI) on the basis of soil moisture using the Noah 3.3 Land Surface Model (LSM) for potentially monitoring extreme drought events. The Yangtze basin was selected to evaluate the Noah LSM performance for the East Asia region (15-60°N, 70-150°E) and the evapotranspiration (ET) and sensible heat flux (SH) were compared with ET and SH from FluxNet and with ET from FluxCom, Global Land Evaporation Amsterdam Model (GLEAM), ERA-5, and Generalized Complementary Relationship (GCR). For the ET, the coefficients of determination (R2) were higher than 0.96, while the R2 value for the SH was 0.71 with slightly lower than those. A time series of the weekly root-zone SMI revealed that the regions with Extreme drought had been expanded from the northern part of East China to the entire East China between July to October 2019. The trend analysis of the number of extreme drought events showed that extreme drought events in spring had reduced in South Korea over the past 20 years, while those in fall had a tendency to increase. It is concluded that this study can be useful to reduce the socioeconomic damages resulted from climate extremes by comprehensively characterizing extreme drought events.

Estimation of the Amount of Soil toss and Main Sources of Riverbed Sediments in Each Tributary Basin of the Seomjin River in Sunchang Area, Korea (순창지역 섬진강 지류별 토양유실량 산정과 하상퇴적물의 주공급원에 관한 고찰)

  • Kwak Jae-Ho;Yang Dong-Yoon;Lee Hyun-Koo;Kim Ju-Yong;Lee Seong-Gu
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.607-622
    • /
    • 2005
  • This study was carried out in order to evaluate where the soil loss was mainly occurred, .and to verify how riverbed sediments in the tributaries of the Seomjin River were related to their source rocks distributed in Sunchang area. The study area including the Seomjin River with 4 tributaries of Kyeongcheon, Okgwacheon, Changjeong-cheon and Ipcheon was divided into 10 watershed. The RUSLE (Revised Universal Soil Loss Equation) was estimated for all the grids (10 m cells) in the corresponding watershed. The amount of soil loss per unit area was calculated as follows: dry fold (53,140.94 tons/ha/year), orchard (25,063.38 tons/ha/year), paddy field (6,506.7 tons/ha/year) and Idlest (6,074.36 tons/ha/year). The differences of soil loss per unit area appear to be depends on areas described earlier. Soil erosion hazard zones were generally distributed within dry fields. Several thematic maps such as land use maps, topographical maps and soil maps were used as a data to generate the RUSLE factors. The amount of soil loss, computed by using the RUSLE, showed that soil loss mainly occurred at the regions where possible source rocks were distributed along the stream. Based on the this study on soil loss and soil erosion hazard zone together with chondrite-normalized REE patterns that were previously analyzed in same study area, a closed relationship between riverbed sediments and possible source rocks is formed. Especially in the Okgwacheon that are widely distributed by various rocks, chondrite-normalized REE pattern derived from the riverbed sediments, source rock and soil is expected to have a closed relationship with the distribution of soil loss.

Characteristics and Risk Assessment of Heavy Metals in the Stormwater Runoffs from Industrial Region Discharged into Shihwa Lake (시화호 산업지역 강우유출수 내 중금속 유출특성 및 위해성 평가)

  • Ra, Kongtae;Kim, Joung-Keun;Lee, Jung-Moo;Lee, Seung-Yong;Kim, Eun-Soo;Kim, Kyung-Tae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.283-296
    • /
    • 2014
  • The distribution of heavy metals in the stormwater runoffs from industrial sites around Shihwa Lake that implements the total pollutant load management system (TPLMS) was studied to characterize the temporal changes of metal concentrations and to assess the ecological risk in dissolved and particulate phases of the selected metals. The dissolved Co and Ni concentration demonstrated first flush and tended to decrease with increasing of the duration of rainfall. The intensity of precipitation was found to be the main controlling factor of particulate metals in the stromwater runoffs. The particulate concentration of Pb accounted for 97.2% so the particulate phase was its main form. Other metals followed the sequence: Pb>Cu>Cd>Co>Zn>Ni. The particulate-dissolved partitioning coefficient ($K_d$) indicated that the $K_d$ of Pb were bigger than that of other metals because the metal Pb in the stormwater runoffs is quickly removed into the particulate phase. In a single day rainfall event, total runoff fluxes for total metals as the sum of dissolved and particulate forms through only two sewer outlets were 2.21 kg for Co, 30.5 kg for Ni, 278.3 kg for Cu, 398.3 kg for Zn, 0.39 kg for Cd and 40.0 kg for Pb, respectively. Given the annual rainfall, the number of rain days and the basin area for total pollutant load management system (TPLMS) of Shihwa area, enormous amount of non-point metal pollutants were entered into Lake with any treatment. The dissolved metals (e.g., Ni, Cu and Zn) in the stormwater runoffs exceeded the acute water quality criteria. Additionally, all metals were significantly enriched in the particulate phase and exceeded the PEL criteria of sediment quality guidelines (SQGs). These results indicated that the heavy metals in the stormwater runoffs may pose a very high ecological risk to the coastal environments and ecosystem.

Geochemical characteristics of organic matter in the Tertiary sediments from the JDZ Blocks, offshore Korea (대륙붕 한일공동광구에 분포하는 제 3기 시추 시료 유기물의 지화학적 특성)

  • Lee Youngjoo;Yun Hyesu;Cheong Taejin;Kwak Younghoon;Oh Jaeho
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.25-36
    • /
    • 1998
  • Organic geochemical analyses were carried out in order to characterize organic matter (OM) in the sediments recovered from Korea/japan Joint Development Zone (JDZ V-1, V-3, VII-1 and VII-2) which is located in the northern end of the East China Sea Shelf Basin. Late Miocene sediments from the JDZ V-1 and V-3 wells generally contain less than $0.5\%$ of total organic carbon (TOC). However, early Miocene and Oligocene sediments show TOC values of $0.6-0.8\%$. Middle to late Miocene sediments are rich in TOC up to $20\%$ from JDZ VII-1 and JDZ VII-2 wells. The reason for this rich TOC might be attributed to the presence of coaly shales. Kerogens in the Tertiary sediments from the JDZ series wells are mainly composed of terrestrially derived woody organic matter. Elemental analyses indicate that OM from these wells can be compared to type III. Low hydrocarbon potential and hydrogen index reflect the type of OM. According to the biomarker analyses, the input of the terrestrial OM is prevalent. Oxidizing condition is also indicated by Pristane/Phytane ratio. Samples from the JDZ V-1 and V-3 wells obtain maturities equivalent to the oil generation zone around total depth, and organic matter below 3600 m from JDZ VII-1 and VII-2 wells reached dry gas generation stage. Oligocene sediments below 3500 m in the JDZ VII-1 and JDZ VII-2 wells may have generated limited amount of hydrocarbons, showing a progressive decrease in hydrogen index with depth, due to thermal degradation with increased burial. Gas shows and finely disseminated gilsonite may indicate the generation and migration of the hydrocarbons.

  • PDF

Impacts of Argo temperature in East Sea Regional Ocean Model with a 3D-Var Data Assimilation (동해 해양자료동화시스템에 대한 Argo 자료동화 민감도 분석)

  • KIM, SOYEON;JO, YOUNGSOON;KIM, YOUNG-HO;LIM, BYUNGHWAN;CHANG, PIL-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.3
    • /
    • pp.119-130
    • /
    • 2015
  • Impacts of Argo temperature assimilation on the analysis fields in the East Sea is investigated by using DAESROM, the East Sea Regional Ocean Model with a 3-dimensional variational assimilation module (Kim et al., 2009). Namely, we produced analysis fields in 2009, in which temperature profiles, sea surface temperature (SST) and sea surface height (SSH) anomaly were assimilated (Exp. AllDa) and carried out additional experiment by withdrawing Argo temperature data (Exp. NoArgo). When comparing both experimental results using assimilated temperature profiles, Root Mean Square Error (RMSE) of the Exp. AllDa is generally lower than the Exp. NoArgo. In particular, the Argo impacts are large in the subsurface layer, showing the RMSE difference of about $0.5^{\circ}C$. Based on the observations of 14 surface drifters, Argo impacts on the current and temperature fields in the surface layer are investigated. In general, surface currents along the drifter positions are improved in the Exp. AllDa, and large RMSE differences (about 2.0~6.0 cm/s) between both experiments are found in drifters which observed longer period in the southern region where Argo density was high. On the other hand, Argo impacts on the SST fields are negligible, and it is considered that SST assimilation with 1-day interval has dominant effects. Similar to the difference of surface current fields between both experiments, SSH fields also reveal significant difference in the southern East Sea, for example the southwestern Yamato Basin where anticyclonic circulation develops. The comparison of SSH fields implies that SSH assimilation does not correct the SSH difference caused by withdrawing Argo data. Thus Argo assimilation has an important role to reproduce meso-scale circulation features in the East Sea.