• Title/Summary/Keyword: Basin Characteristics

Search Result 1,278, Processing Time 0.031 seconds

Development of Basin-wide runoff Analysis Model for Integrated Real-time Water Management (실시간 물 관리 운영을 위한 유역 유출 모의 모형 개발)

  • Hwang, Man-Ha;Maeng, Sung-Jin;Ko, Ick-Hwan;Park, Jeong-In;Ryoo, So-Ra
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.507-510
    • /
    • 2003
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. A short-term water demand forecasting technology will be developed taking into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

Development of Rainfall-Runoff forecasting System (유역 유출 예측 시스템 개발)

  • Hwang, Man Ha;Maeng, Sung Jin;Ko, Ick Hwan;Ryoo, So Ra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.709-712
    • /
    • 2004
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. h short-term water demand forecasting technology will be developed fatting into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

Development of NH3 Emission Factors using a Dynamic Flux Chamber in a Sewage Treatment Plant (부유형 챔버를 이용한 하수처리장에서의 암모니아 배출 특성 연구)

  • Jeon, Eui-Chan;Sa, Jae-Hwan;Park, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.263-273
    • /
    • 2005
  • In this study, the major emission procedures and emission characteristics were identified at the site of sewage treatment plant which is one of the major sources of ammonia. At the same time the emission factors and emission rates were estimated. In order to calculate the emission flux, we used a Dynamic Flux Chamber(DFC), which is found to be a proper sampling devise for area sources such as sewage treatment plant. It was found that the most stable sampling condition was when the stirrer's speed of DFC was 120RPM, and it would be the best time to take a sample 60 minutes later after setting the chamber. The relatively higher flux was shown in Autumn compared to summer and winter. Annual ammonia emission rates procedures were calculated as $906.32{\mu}g/activity-ton$, $1,114.72{\mu}g/activity-ton$ and $437.53{\mu}g/activity-ton$ each at the primary settling basin, aeration basin and the final settling basin, respectively. The ammonia emission rate the highest at in the aeration basin according to this test. This results was due to that the surface of aeration basin or the final settling basin is relatively wider than the primary settling basin.

Physical Characterization of Domestic Aggregate (국내 골재의 물리적 특성 분석)

  • Junyoung Ko;Eungyu Park;Junghae Choi;Jong-Tae Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.169-187
    • /
    • 2023
  • Aggregates from 84 cities and counties in Korea were tested for quality to allow analysis of the physical characteristics of aggregates from river, land, and forest environments. River and land aggregates were analyzed for 18 test items, and forest aggregates for 12 test items. They were classified according to watershed and geology, respectively. The observed physical characteristics of the river aggregates by basin were as follows: aggregates from the Geum River basin passed through 2.5, 1.2, 0.6, 0.3, 0.15, and 0.08 mm sieves; clay lumps constituted the Nakdong River basin material; aggregates from the Seomjin River basin passed through 10, 5, and 2.5 mm sieves; those from the Youngsang River basin passed through 1.2, 0.6, 0.3, 0.15, and 0.08 mm sieves; and aggregates from the Han River basin passed through 10, 5, 2.5, 1.2, 0.6, 0.3, and 0.08 mm sieves, Stability; Standard errors were analyzed for the average amount passing through 10, 0.6, and 0.08 mm silver sieves, and performance rate showed different distribution patterns from other physical characteristics. Analysis of variance found that 16 of the 18 items, excluding the absorption rate and the performance rate, had statistically significant differences in their averages by region. Considering land aggregates by basin, those from the Nakdong River basin excluding the Geum River basin had clay lumps, those from the Seomjin River basin had 10 and 5 mm sieve passage, aggregates from the Youngsang River basin had 0.08 mm sieve passage, and those from the Han River basin had 10, 0.6, and 0.08 mm sieve passage. The standard error of the mean of the quantity showed a different distribution pattern from the other physical characteristics. Analysis of variance found a statistically significant difference in the average of all 18 items by region. Analyzing forest aggregates by geology showed distributions of porosity patterns different from those of other physical characteristics in metamorphic rocks (but not igneous rocks), and distributions of wear rate and porosity were different from those of sedimentary rocks. There were statistically significant differences in the average volume mass, water absorption rate, wear rate, and Sc/Rc items by lipid.

Analysis of Efficiency of Pollution Reduction Scenarios by Flow Regime Using SWAT Model - A case study for Dalcheon Basin - (SWAT 모형을 활용한 유황별 비점오염 저감 효율 분석 - 달천 유역을 대상으로 -)

  • Kim, Soohong;Hong, Jiyeong;Park, Woonji;Kim, Jonggun;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.469-482
    • /
    • 2021
  • The recent climate change and urbanization have seen an increase in runoff and pollutant loads, and consequently significant negative water pollution. The characteristics of the pollutant loads vary among the different flow regime depending on their source and transport mechanism, However, pollutant load reduction based on flow regime perspectives has not been investigated thoroughly. Therefore, it is necessary to analyze the effects of concentration on pollutant load characteristics and reductions from each flow regime to develop efficient pollution management. As non-point pollutants continuously increase due to the increase in impervious area, efficient management is necessary. Therefore, in this study, 1) the characteristics of pollutant sources were analyzed at the Dalcheon Basin, 2) reduction of nonpoint pollution, and 3) reduction efficiency for flow regimes were analyzed. By analyzing the characteristics of the Dalcheon Basin, a reduction efficiency scenario for each pollutant source was constructed. The efficiency analysis showed 0.06% to 5.62% for the living scenario, 0.09 to 24.62% for the livestock scenario, 0.17% to 12.81% for the industry scenario, 9.45% to 38.45% for the land scenario, and 9.8% to 39.2% for the composite scenario. Therefore, various pollution reduction scenarios, taking into account the characteristics of pollutants and flow regime characteristics, can contribute to the development of efficient measurements to improve water quality at various flow regime perspectives in the Dalcheon Basin.

Estimation of Storage Deficit by Run's Characteritics (Runs의 특성에 의한 지속기간별 저수부족량의 추정)

  • 강관원;안경수
    • Water for future
    • /
    • v.19 no.4
    • /
    • pp.329-338
    • /
    • 1986
  • the purpose of this study is to estimate the storage deficit by Run's Characteristics of (-)Run-length and (-)Run-sum. Runoff data are obtained from the guaging stations of Y대-Ju in Hanriver Basin, Wae-Gwan in Nak Dong River Basin and Gyo Am in Geum River Basin. In order to estimate the storage deficit, runhydrographs are established with each return period of 10, 30, ......, 200 years and regression equation is derived from relationship between (-) run-length and storage deficit. From the comparison of estimated reservoir storage with observed values., it was proved that this suggested method can be used for the estimation of the storage deficit.

  • PDF

A Statistical Study of Alluvial formation in South Korea (남한(南韓)의 충적층(沖積層)의 통계학적(統計學的) 지질연구(地質硏究))

  • Jeong, Bong Il
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.125-133
    • /
    • 1975
  • The entire South Korea was divided into several main river basins and drilling data through the South Korea were grouped in accordance with the basins. Thickness of each alluvial formation in each basin was averaged to produce the thickness of the whole alluvium. From studying the alluvial stratigraphy of each basin the condition of the alluvial sedimentation was studied and compared between different basins. Thus the characteristics of the alluvial sedimentation in each basin was clarified.

  • PDF

INTEGRATED WATER RESOURCES AND QUALITY MANAGEMENT SYSTEM USING GIS/RS TECHNOLOGIES

  • Shim, Kyu-Cheoul;Shim, Soon-Bo;Lee, Yo-Sang
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • There has been continuous efforts to manage water resources for the required water quality criterion at river channel in Korea. However, we could obtain the partial improvement only for the point sources such as, waste waters from urban and factory site through the water quality management. Therefore, it is strongly needed that the best management practice throughout the river basin fur water quality management including non-point sources pollutant loads. This problem should be resolved by recognizing the non-point sources pollutant loads from the upstream river basin to the outlet of the basin depends on the landuse and soil type characteristics of the river basin using the computer simulation by a distributed model based on the detailed investigation and application of Geographic Information System (GIS). The purpose of this study is consisted of the three major distributions, which are the investigation of spread non-point sources pollutants throughout the river basin, development of the base maps to represent and interpret the input and outputs of the distributed simulation model, and prediction of non-point sources pollutant loads at the outlet of a up-stream river basin using Agricultural Non-Point Sources Model (AGNPS). For the validation purpose, the Seom-Jin River basin was selected with two flood events in 1998. The results of this application showed that the use of combined a distributed model and an application of GIS was very effective fur the best water resources and quality management practice throughout the river basin

  • PDF

The Comparative Estimation of Soil Erosion for Andong and Imha Basins using GIS Spatial Analysis (GIS 공간분석을 이용한 안동·임하호 유역의 토사유실 비교 평가)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.341-347
    • /
    • 2006
  • Geographically Imha basin is adjacent to Andong basin, but the occurrence of turbid water in each reservoir by storm events shows big differences. Hence, it is very important to identify the reason for these large differences. This study compared and analyzed soil erosion using the semi-empirical soil erosion model, RUSLE for both Imha and Andong basin, especially with emphasis on high-density turbid water. The agricultural district, which is the most vulnerable to soil erosion, was intensively analyzed based on land cover map produced by Ministry of Environment. As a result, the portion of the agricultural area is 11.88% for Andong basin, while it is 14.95% for Imha basin. Also all RUSLE factors excepts practice factor turned out to be higher for Imha basin. This means that the basin characteristics such as soil texture, terrain, and land cover for Imha basin is more vulnerable to soil erosion. Estimation of soil erosion by RUSLE for Andong and Imha basin is 1,275,806 ton and 1,501,608 ton, respectively, showing higher soil erosion by 225,802 ton for Imha basin.

The characteristics of discharged non-point pollutants on Hwa-sung lake inflow streams on precipitation (화성호 유입하천의 강우시 비점오염물질 유출특성)

  • Lee, Sang Eun;Choi, I Song;Lee, In Ho;Hong, Dae Byuk;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.651-661
    • /
    • 2011
  • The purpose of this study is to estimate the characteristics and pollutant loadings of non-point pollutants that flowed in the streams on precipitation for pollutant loading reduction of Hwa-sung lake inflow streams. Although it has been made an effort to improve the water quality of Hwa-sung basin through the strategies for the preservation of water quality, it is shown that the water quality is not greatly improved. Because it has been industrialized and urbanized near Hwa-sung basin so that it is difficult to reduce the water pollution due to the increase in pollutant loadings of point and non-point sources. In this study, it is investigated the outflow characteristics of non-point pollutants that discharged with storm runoff and estimated the effect of runoff on Hwa-sung basin. The final goal of this study is to utilize the basic information for proper management and strategies of non-point sources on Hwa-sung basin. At the result of inflow streams, Ja-an stream that has the greatest pollutant loadings on precipitation is strongly influenced on the water quantity of Hwa-sung basin. On the other hand, it is shown that Nam-yang stream is strongly influenced on the SS concentration of Hwasung basin among them. Also, all streams; Nam-yang, Ja-ahn, Ah-eun stream; has the degree of slope more than or near 1 in the correlation results so that they have strong pollutant loading impact and the concentration of SS is the highest among other pollutants. So, specific studies on initial rain phenomena are more necessary to manage the pollutants economically. Also, the proper control of SS concentration is required to manage the effluent pollutants effectively on precipitation. So, it is necessary to consider the strategies for non-point pollutants as well as point pollutants when the new management is imposed to reduce the pollutant load for improvement of Hwa-sung basin.