• Title/Summary/Keyword: Basic chromosome number

Search Result 42, Processing Time 0.018 seconds

Chromosome Number in Several Species of the Genus Fusarium (Fusarium 속 균종들의 염색체수)

  • 민병례
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.69-73
    • /
    • 1991
  • The chromosome of Fusarium species during the vegetatve nuclear divisions in hyphae were observed by use of HCl-Giemsa technique on light microscope. The haploid chromosome number of Fusarium anthophilum 7472 was n=7, n=6 in F. anthophilum 7481 and n=6 in F. oxysporum 7500. The haploid chromosome number was 7 in F. napiforme 6129 and F. napiforme 6144. Those of F. caucasicum F. caucasicum ATCC 18791 and F. aquaeductuum ATCC 15612 were n=5. F. coeruleum ATCC 20088 was n=6, n=8 in F. camptoceras ATCC 16065 and n=7 in F. sambucinum NRRL 13451. From these results and previous papers, it may be concluded that the basic haploid chromosome number of the genus Fusarium is n=4.

  • PDF

Chromosome-Centric Human Proteome Study of Chromosome 11 Team

  • Hwang, Heeyoun;Kim, Jin Young;Yoo, Jong Shin
    • Mass Spectrometry Letters
    • /
    • v.12 no.3
    • /
    • pp.60-65
    • /
    • 2021
  • As a part of the Chromosome-centric Human Proteome Project (C-HPP), we have developed a few algorithms for accurate identification of missing proteins, alternative splicing variants, single amino acid variants, and characterization of function unannotated proteins. We have found missing proteins, novel and known ASVs, and SAAVs using LC-MS/MS data from human brain and olfactory epithelial tissue, where we validated their existence using synthetic peptides. According to the neXtProt database, the number of missing proteins in chromosome 11 shows a decreasing pattern. The development of genomic and transcriptomic sequencing techniques make the number of protein variants in chromosome 11 tremendously increase. We developed a web solution named as SAAvpedia for identification and function annotation of SAAVs, and the SAAV information is automatically transformed into the neXtProt web page using REST API service. For the 73 uPE1 in chromosome 11, we have studied the function annotaion of CCDC90B (NX_Q9GZT6), SMAP (NX_O00193), and C11orf52 (NX_Q96A22).

Chromosome number of myoga ginger (Zingiber mioga: Zingiberaceae) in Korea

  • IKEDA, Hiroshi;NAM, Bo-Mi;YAMAMOTO, Nobuko;FUNAKOSHI, Hidenobu;TAKANO, Atsuko;IM, Hyoung-Tak
    • Korean Journal of Plant Taxonomy
    • /
    • v.51 no.1
    • /
    • pp.100-102
    • /
    • 2021
  • The chromosome number of myoga ginger (Zingiber mioga (Thunb.) Roscoe: Zingiberaceae) has been reported as 2n = 22 for Chinese plants and 2n = 55 for Japanese plants. We checked the chromosome number of Z. mioga in plants collected in Jeollabuk-do and Jeollanam-do, Korea, and counted 2n = 44, the first report of this number for the species. As the basic chromosome number of Z. mioga is thought to be x = 11, Z. mioga plants in China, Korea, and Japan appear to be diploids, tetraploids, and pentaploids, respectively. In finding the tetraploid race of Z. mioga in Korea, we can hypothesize that the pentaploid race in Japan is derived through the fertilization of reduced gametes of the diploid race and unreduced gametes of the tetraploid race.

Chromosome numbers of eight Carex taxa in Korea (Cyperaceae)

  • CHUNG, Kyong-Sook;CHUNG, Gyu Young
    • Korean Journal of Plant Taxonomy
    • /
    • v.51 no.3
    • /
    • pp.192-197
    • /
    • 2021
  • In the flora of Korea, Carex L. is one of the most species-rich genera. Among nearly 157 Carex taxa, less than 30 have had chromosome numbers reported. We report the meiotic chromosome numbers of eight Carex taxa from Korean populations, which include the first count for C. accrescens Ohwi (n = 37II) and the first chromosome investigations of Korea populations for three taxa: C. bostrychostigma Maxim. (n = 22II), C. lanceolata Boott (n = 36II), and C. paxii Kuk. (n = 38II). In most species, chromosome counts observed in the study are included in the variation ranges of previous chromosome numbers. However, C. bostrychostigma Maxim. (n = 22II) and C. planiculmis Kom. (n = 29II) are assigned new chromosome numbers. Carex is known to have holocentric chromosomes, lacking visible primary constrictions and exhibiting great variance in its chromosome number. Further investigations of the diversity of Carex chromosomes will provide basic information with which to understand the high species diversity of the genus.

Chromosomal Studies on the genus of Rhizopus I (Rhizopus속의 염색체에 관한 연구 1)

  • 민병례;이택준;최영길
    • Korean Journal of Microbiology
    • /
    • v.20 no.3
    • /
    • pp.134-146
    • /
    • 1982
  • This experiment was designed to elucidate the life cycle of 7 species (Rh.nigricans, Rh. delemar, Rh.oryzae, Rh.acidus, Rh.tritici, Rh. formosaensis and Rh. japonicus) in genus Rhizopus isolated from Korean soil, so as to seize the appropriate stage for detecting their chromosomal number and nuclear size under the method of thin layer slide culture using modified Rogers(1965a) medium. The results are summarized as the folowings ; 1. The haploid chromosome number are found 16 in Rh. japonicus are 8, respectively. 2. Comparing the 7 species of Rhizopus with each other, it may be concluded that the basic haploid chromosome number of genus Rhizopus distributed in Korean soil are 8 and that Rh. nigricans is double of the basic hapolid chromosome number (n = 16). Besides them, the other two species (Rh. tritici and Rh. formosaensis) are believed aneuploids.

  • PDF

A cytotaxonomic study of Galium (Rubiaceae) in Korea (한국산 갈퀴덩굴속(Galium L.)의 세포분류학적 연구)

  • Jeong, Keum Seon;Pak, Jae-Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • In this study, the somatic chromosome of 14 taxa of Korean Galium L. were investigated. Among them were a few taxa for which the somatic chromosome number was determined for the first time. The somatic chromosome numbers of Korean Galium L. were 2n = 22, 24, 44, 48, 66, 72, 77, 88 and so basic chromosome numbers were x = 11 or 12. Those taxa having the basic chromosome number x = 11 showed polyploidy, including diploid, tetraploid, heptaploid, and octoploid. Tetraploid and hexaploid can be observed in those taxa with the basic number x = 12. The eleven taxa reported 11 for the first time are G. spurium var. echinospermon (Wallr.) Hayek (2n = 44), G. gracilens (A. Gray) Makino (2n = 22), G. pogonanthum Franch. & Sav. (2n = 22, 44), G. trachyspermum A. Gray (2n = 22, 44), G. japonicum (Maxim.) Makino & Nakai (2n = 77), G. trifloriforme Kom. (2n = 44), G. dahuricum Turcz. var. dahuricum (2n = 48, 72), G. dahuricum var. tokyoense (Makino) Cufod. (2n = 22), G. kinuta Nakai & Hara (2n=66), G. verum var. trachycarpum for. nikkoense (Nakai) Ohwi (2n = 44), G. verum var. asiaticum for. pusillum (Nakai) M. Park (2n = 44). The taxa with the same chromosome numbers as previously reported ones were G. boreale L. (2n=22) and G. verum var. asiaticum Nakai for. asiaticum (2n = 44). The chromosome number of G. trifidum L. (2n = 22) was different from the previous report. Two infraspecific taxa of G. dahuricum showed differences in their basic chromosome numbers (x = 11 for G. dahuricum Turcz. var. dahuricum and x = 12 for var. tokyoense (Makino) Cufod. The somatic chromosome number for G. dahuricum Turcz. var. dahuricum was found to be 2n = 48 (tetraploid) or 72 (hexaploid), while that of G. dahuricum var. tokyoense (Makino) Cufod. was found to be 2n = 22 (diploid). Therefore, basic chromosome numbers for members of the genus Galium can be used as valuable characters in delimiting infrageneric sections and investigating interspecific relationships.

Morphological and Chromosomal Charateristics of the Three Introduced Cyprinid Species (Cyprinidae) (도입된 잉어과 어류 3종의 외부형태 및 염색체 특징)

  • Kim, Seong-Won;Choi, Nack-Joong;Lee, Jong-Yun;Lee, Wan-Ok;Jang, Seon-Il
    • Korean Journal of Ichthyology
    • /
    • v.8 no.2
    • /
    • pp.68-73
    • /
    • 1996
  • This study was carried out to obtain the basic information on morphological and chromosomal charateristics in the three species of Chinese carps (grass carp; Ctenopharyngodon idellua, bighead carp; Aristichthys nobilis, and silver carp; Hypophthalmichthys molitrix) introduced to Korea from China. C. idellua was differ from A. nobilis and H. molitrix by the number of gill rakers, scales, fin rays, body proportion. A. nobilis and H. molitrix were similar in having ventral keel and many scale number, but H. molitrix was differ from A. nobilis by the connected gill rakers and body color pattern. Diploid chromosome and arm number (fundamental number, NF) of the three species were all the same to 2n=48 and NF=84. Diploid chromosome numbers in the three species are consisted of 10 pairs of metacentric chromosome, 8 pairs of submetacentric chromosome and 6 pairs of acro and/ or telocentric chromosome. Morphological and karyological relationship of the three Chinese carps are discussed.

  • PDF

Chromosomal Studies on the Genus Fusarium (Fusarium속의 염색체 분석)

  • 민병례
    • Korean Journal of Microbiology
    • /
    • v.27 no.4
    • /
    • pp.342-347
    • /
    • 1989
  • by use of HCl-Giemsa technique and light microscope, dividing vegetative nuclei in hyphae of Fusarium species were observed and the results are summerized. The chromosome number of these fungi was ranged 4 to 8. Of the 20 strains, the highest haploid chromosome number is 8 in F. solani S Hongchun K4, F. moniliforme (from banana) and F. raphani (from radish). The lowest is 4 in F. sporotrichioides NRRL 3510 and F. equiseti KFCC 11843 IFO 30198. F. solani 7468 (from Sydney), F. solani 7475 (from Sydney), F. oxysporum(from tomato). F. roseum (from rice), F. sporotrichioides C Jngsun 1, F. equiseti C Kosung 1 and F. avenaceum 46039 are n=7. F. moniliforme (from rice) F. graminearum, F. proliferatum 6787 (from Syndey), F. proliferatum 7459 (from Synder) and F. anguioides ATCC 20351 are n=6. F. moniliforme NRRL 2284, F. poae NRRL 3287 and F. trincinctum NRRL 3299 are n=5. From these results, it may be concluded that the basic haploid chromosome number of the genus Fusarium is 4 and mat have been evolutionary variation of chromosome number through aneuploidy and polyploidy.

  • PDF

Chromosomal Study on the Genus Fusarium (Fusarium속의 염색체에 관한 연구)

  • Min, Byung-Re
    • The Korean Journal of Mycology
    • /
    • v.18 no.3
    • /
    • pp.132-136
    • /
    • 1990
  • The vegetative nuclear divisions in hyphae and the chromosome of Fusarium were observed by use of HCI-Giemsa technique and light microscope. The chromosome of nuclear in F. moniliforme both 7150 and 7219 were eight. F. subglutinans 1082 was n=8 and n=7 in F. sub­glutinans 1083. F. nygamai 5668 was n=7 and n=5 in F. nygamai 7132. F. beomiforme 9758 and 9760 were n=7. F. coccidicola ATCC 24138 and F. acuminatum ATCC 16560 were n=6. From these results and other reports, the basic chromosomal number of these fungi might be speculated to be four.

  • PDF

Chromosomal studies on the genus of Rhizopus -II. Chromosomal studies on 17 species of the genus Rhizopus- (Rhizopus屬의 染色體에 關한 硏究(第二報) -II. Rhizopus 17種에 對하여-)

  • Min, Byung-Re
    • Korean Journal of Microbiology
    • /
    • v.22 no.3
    • /
    • pp.197-205
    • /
    • 1984
  • After the previous paper, this chromosomal studies on the fungi were dealt with 17 species in genus of Rhizopus. The results are sumarized as the followings; The haploid chromosome number of 17 species were confirmed as of 6(Rh. oligosporus), 8(Rh. homothallicus, Rh. liquefaciens, Rh. shanghaiensis, Rh, acetorinus), 12(Rh. microsporus, Rh. pseudochinensis, Rh, rhizopodiformis, Rh, thermosus, and Rh. kazanensis), 14(Rh. stolonifer), and 16(Rh. suinus), respectively. Referring to the above fact and the previous paper, it is strongly presumed that the basic chromosome number of Rhizopus are 4.

  • PDF