• Title/Summary/Keyword: Basic Element

Search Result 1,597, Processing Time 0.027 seconds

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF

Non-conforming modes for improvement of finite element performance

  • Choi, Chang-Koon;Lee, Tae-Yeol
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.595-610
    • /
    • 2002
  • This paper presents an efficiency of various non-conforming (NC) modes in development of a series of new finite elements with the special emphasis on 4-node quadrilateral elements. The NC modes have been used as a key scheme to improve the behaviors of various types of new finite elements, i.e., Mindlin plate bending elements, membrane elements with drilling degrees of freedom, flat shell elements. The NC modes are classified into three groups according to the 'correction constants' of 'Direct Modification Method'. The first group is 'basic NC modes', which have been widely used by a number of researchers in the finite element communities. The basic NC modes are effective to improve the behaviors of regular shaped elements. The second group is 'hierarchical NC modes' which improve the behaviors of distorted elements effectively. The last group is 'higher order NC modes' which improve the behaviors of plate-bending elements. When the basic NC modes are combined with hierarchical or higher order NC modes, the elements become insensitive to mesh distortions. When the membrane component of a flat shell has 'hierarchical NC modes', the membrane locking can be suppressed. A number of numerical tests are carried out to show the positive effect of aforementioned various NC modes incorporated into various types of finite elements.

Automatic Generation of Triangular Ginite Element Meshes on Three-Dimensional Surfaces (3차원 곡면에서 삼각형 유한요소망의 자동생성)

  • 채수원;손창현
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.224-233
    • /
    • 1996
  • An automatic mesh generation scheme with triangular finite elements on three-dimensional surfaces has been developed. The surface triangulation process is performed as follows. To begin, surfaces with key nodes are transformed to two-dimensional planes and the meshes with triangular elements are constructed in these planes. Finally, the constructed meshes are transformed back to the original 3D surfaces. For the mesh generation, an irregular mesh generation scheme is employed in which local mesh densities are assigned by the user along the boundaries of the analysis domain. For this purpose a looping algorithm combined with an advancing front technique using basic operators has been developed, in which the loops are recursively subdivided into subloops with the use of the best split lines and then the basic operators generate elements. Using the split lines, the original boundaries are split recursively until each loop contains a certain number of key nodes, and then using the basic operators such as type-1 and type-2, one or two triangular elements are generated at each operation. After the triangulation process has been completed for each meshing domain, the resulting meshes are finally improved by smoothing process. Sample meshes are presented to demonstrate the versatility of the algorithm.

  • PDF

A Study on The Foundation Corse of Design Schools in USA (미국 디자인대학의 Foundation과정에 관한 연구)

  • Min, Chan-Hong
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.2
    • /
    • pp.175-190
    • /
    • 2009
  • As essential element of designers, foundation studies program helps student deal with the individual expression of imagination and variety of correspondence for solving design problem through the understanding of 2-D, 3-D basic design elements, principals, structures. Liberal art and foundation studio courses provides embodiment and settlement of design principal through the foundation studies expand to experiences systematically and deeply. After the Industrialization, foundation studies have developed from Bauhaus in German, the courses have been progressing and systematizing with the demand of time in United States. Growth of Industrialization, expanded design areas departmentalized to various of fields, then the segmentation of foundation courses tend to important than basic design courses. The introduction of information era, the appearance of computer is placed as a tool of design development and added to applied basic courses. This study is intended to know how to change the leading foundation courses in United State due to the revitalization of industrialization and information through the research and analyse to foundation design education curriculums. As a result, most of design school in United States provide drawing, 2-D, 3-D, and 4-D courses included 3-D design element as a basic studies and provide to students introduction to fundamental principal of design concept and communication in both theoretical and applied form. Also though the history, literature, critic, research and survey courses provide students to organize fundamental of systematical logic and understanding design system.

  • PDF

A Study of 3-Dimension Plate- Elastic Foundation Interaction Analysis by Finite Element Method (판과 탄성지반의 상호작용을 고려한 3차원 유한요소해석에 관한 연구)

  • 황창규;강재순
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.7-18
    • /
    • 1992
  • This paper is a basic study of three by finite element method. Plate and medium. Plate is discretized 4 node p melt. At the interface between plate a melt is adopted for considering plate Measured vertical displacement out by plate foundation interaction finite zion is followed as ; 1. as being interface element adopts dation interaction finite element 2. As being interface element and platefoundation interaction finite 3. As being interface element adopte Therefore, post processing that as.

  • PDF

Free Vibration Analysis of Curved Beams Regarded as Discrete System Using Finite Element-Transfer Stiffness Coefficient Method (유한요소-전달강성계수법에 의한 이산계 곡선보의 자유진동해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • A curved beam is one of the basic and important structural elements in structural design. In this paper, the authors formulated the computational algorithm for analyzing the free vibration of curved beams using the finite element-transfer stiffness coefficient method. The concept of the finite element-transfer stiffness coefficient method is the combination of the modeling technique of the finite element method and the transfer technique of the transfer stiffness coefficient method. And, we confirm the effectiveness the finite element-transfer stiffness coefficient method from the free vibration analysis of two numerical models which are a semicircle beam and a quarter circle beam.

Free vibration analysis of Reissner plates by mixed finite element

  • Eratli, Nihal;Akoz, A. Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.277-298
    • /
    • 2002
  • In this study, free vibration analysis of Reissner plates on Pasternak foundation is carried out by mixed finite element method based on the G$\hat{a}$teaux differential. New boundary conditions are established for plates on Pasternak foundation. This method is developed and applied to numerous problems by Ak$\ddot{o}$z and his co-workers. In dynamic analysis, the problem reduces to the solution of a standard eigenvalue problem and the mixed element is based upon a consistent mass matrix formulation. The element has four nodes and bending and torsional moments, transverse shear forces, rotations and displacements are the basic unknowns. The element performance is assessed by comparison with numerical examples known from literature. Validity limits of Kirchhoff plate theory is tested by dynamic analysis. Shear locking effects are tested as far as $h/2a=10^{-6}$ and it is observed that REC32 is free from shear locking.

Three dimensional non-conforming 8-node solid elements with rotational degrees of freedom

  • Choi, Chang-Koon;Chung, Keun-Young;Lee, Nam-Ho
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.569-586
    • /
    • 1996
  • A new three-dimensional 8-node solid element with rotational degrees of freedom is presented. The proposed element is established by adding rotational degrees of freedom to the basic 8-node solid element. Thus the element has three translations and three rotational degrees of freedom per node. The corner rotations are introduced by transforming the hierarchical mid-edge displacements which are parabolic shape along an edge. The derivation of the element is based on the mixed variational principles in which the rotations are introduced as independent variables. Several types of non-conforming modes are selectively added to the displacement fields to obtain a series of improved elements. The resulting elements do not have the spurious zero energy modes and Poisson's ratio locking and pass patch test. Numerical examples show that presented non-conforming solid elements with rotational degrees of freedom show good performance even in the highly distorted meshes.

FORMULATION OF SHELL RINITE ELEMENTS BASED ON A NEW METHOD OF ELEMENT DECOMPISITION (새로운 요소분해방법에 의한 쉘 유한요소의 개발)

  • 이재영
    • Computational Structural Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-78
    • /
    • 1988
  • A new method of element decomposition is suggested for simple, efficient, and generalized formulation of shell finite elements. The kernel of the method is to decompose conceptually the actual element into a translational element and a difference element. The actual element is obtained by combining the two component elements. The derived element can be classified into three basic types depending on how the element is decomposed. A few complementary measures, to remove locking phenomena and thus improve the performance of the elements, have been studied. They are reduced integration, addition of internal degrees of freedom, and mixed formulation. A rational method of controlling spurious zero energy modes has also been devised. Validity and efficiency of the element with or without complementary measures have been examined through a series of numerical studies.

  • PDF