• Title/Summary/Keyword: Baseflow

Search Result 170, Processing Time 0.053 seconds

Estimation of CN-based Infiltration and Baseflow for Effective Watershed Management (효과적인 유역관리를 위한 CN기법 기반의 침투량 산정 및 기저유출량 분석)

  • Kim, Heewon;Sin, Yeonju;Choi, Jungheon;Kang, Hyunwoo;Ryu, Jichul;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.405-412
    • /
    • 2011
  • Increased Non-permeable areas which have resulted from civilization reduce the volume of groundwater infiltration that is one of the important factors causing water shortage during a dry season. Thus, seeking the efficient method to analyze the volume of groundwater in accurate should be needed to solve water shortage problems. In this study, two different watersheds were selected and precipitation, soil group, and land use were surveyed in a particular year in order to figure out the accuracy of estimated infiltration recharge ratio compared to Web-based Hydrograph Analysis Tool (WHAT). The volume of groundwater was estimated considering Antecedent soil Moisture Condition (AMC) and Curve Number (CN) using Long Term Hydrologic Impact Assessment (L-THIA) model. The results of this study showed that in the case of Kyoung-an watershed, the volume of both infiltration and baseflow seperated from WHAT was 46.99% in 2006 and 33.68% in 2007 each and in Do-am watershed the volume of both infiltration and baseflow was 33.48% in 2004 and 23.65% in 2005 respectively. L-THIA requires only simple data (i.e., land uses, soils, and precipitation) to simulate the accurate volume of groundwater. Therefore, with convenient way of L-THIA, researchers can manage watershed more effectively than doing it with other models. L-THIA has limitations that it neglects the contributions of snowfall to precipitation. So, to estimate more accurate assessment of the long term hydrological impacts including groundwater with L-THIA, further researches about snowfall data in winter should be considered.

A study on the estimation of hydrologic function for ecological restoration at forested wetland (산지습지의 생태적 복원을 위한 수문학적 기능 평가에 관한 연구)

  • Jung, Yu-Gyeong;Kang, Won-Seok;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.97-111
    • /
    • 2022
  • This study was conducted as restoration work to improve the discharge in forested wetlands where there is a concern of damage and observed changes in the discharge and groundwater level. The monthly changes showed that during the wet season, the amount of discharge decreased after restoration and GWL increased. It showed that during the dry season, the GWL and discharge increased. The increased discharge after restoration seems to be the difference in the number of days with no rainfall duration. The change in discharge for each unit of rainfall showed a tendency to increase the baseflow and decrease the direct discharge after restoration. The recharge ratio of GWL showed a decreasing tendency as rainfall was higher. After restoration, it showed a higher tendency under rainfall with less than 20mm. It has been confirmed that the restoration implemented by the study caused such an effect as the increased baseflow and increased GWL. It would be an effective restoration method to maintain water resources in forested wetlands. In the initial rainfall, it demonstrated a certain level of effect, but it is necessary to develop a restoration technology that can decrease the amount of water discharged after the end of rainfall or during the period of no rainfall to protect and maintain the forested wetlands. Streamflow should be identified by each type of terrain of wetlands and a proper restoration countermeasure should be devised for the site where the discharge frequently occurs.

터널 건설에 따른 지하수-지표수 상호 작용 및 영향에 관한 연구

  • Kim, Tae-Hee;Kim, Young-Sik;Ha, Gyoo-Chul;Kim, Kue-Young;Koh, Dong-Chan;Yang, In-Jae;Hong, Soon-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.839-846
    • /
    • 2004
  • The objective of this study is the evaluation of the tunneling effect on the groundwater-surface water interaction. The designed tunnel line is laid beneath the Gapo-cheon, which runs throughout study area. And, the pre-evaluation of the tunnel-influence on the Gapo-cheon is urgently needed. However, it is very difficult to find out the similar domestic and/or foreign cases. In this study, we would exclude the numerical modeling technique with insufficient data. Instead of the evaluation of the tunneling effect on the groundwater-surface water interaction with the numerical modeling, we monitored the flow rate of surface water at various point. We measured the flow rate of surface water at 5 points. With the results of surface flow, we can conclude that 39% of flow rate in Gapo-cheon is contributed by the groundwater discharge, as baseflow.

  • PDF

Comparison of Calibrations using Modified SWAT Auto-calibration Tool with Various Efficiency Criteria (다양한 검증 지수를 이용한 SWAT 자동 보정 비교 평가)

  • Kang, Hyun-Woo;Ryu, Ji-Chul;Kim, Nam-Won;Kim, Seong-Joon;Engel, Bernard A.;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.19-19
    • /
    • 2011
  • The appraisals of hydrology model behavior for flow and water quality are generally performed through comparison of simulated data with observed ones. To perform appraisal of hydrology model, some criteria are often used, such as coefficient of determination ($R^2$), Nash and Sutcliffe model efficiency coefficient (NSE), index of agreement (d), modified forms of NSE and d, and relative efficiency criteria NSE and d. These criteria are used not only for hydrology model estimations also for various comparisons of two data sets; This NSE has been often used for SWAT calibration. However, it has been known that the NSE value has some limitations in evaluating hydrology at watersheds under monsoon climate because this statistic is largely affected by higher values in the data set. To overcome these limitations, the SWAT auto-calibration module was enhanced with K-means clustering and direct runoff/baseflow modules. However the NSE is still being used in this module to evaluate model performance. Therefore, the SWAT Auto-calibration module was modified to incorporate alternative efficiency criteria into the SWAT K-means/direct runoff-baseflow auto-calibration module. It is expected that this enhanced SWAT auto-calibration module will provide better calibration capability of SWAT model for all flow regime.

  • PDF

Flux of Dissolved Organic and Inorganic Constituents in Forested Headwater Streams

  • Choi, Byoung-Koo;Mangum, Clay N.;Hatten, Jeffery A.;Dewey, Janet C.;Ouyang, Ying
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1171-1179
    • /
    • 2012
  • Headwaters initiate material export to downstream environments. A nested headwater study examined the flux of dissolved constituents and water from a perennial stream and four ephemeral/intermittent streams in the Upper Gulf Coastal Plain of Mississippi. Water was collected during storm and baseflow conditions. Multiple linear regression was used to model constituent concentration and calculate flux. Event was the major source of water discharged from the ephemeral and intermittent streams however, baseflow was the major source for water discharged by the perennial stream during events. The perennial stream had an area weighted average yields of 10.1, 0.01, 1.03, 0.65 kg/ha/yr of DON (dissolved organic nitrogen), $NO_3^-$-N, $NH_4^+$-N and $PO_4^{-3}$, respectively while large variabilities existed between the ephemeral and intermittent streams. These findings highlight the importance of headwaters in protecting the low order drainage basins as a key to water quality within perennial streams.

Development of Rainfall-Runoff Model on Han River(II) - Model Construction - (한강수계 유역유출 분석 모형 구축(II) - 모델구성을 중심으로-)

  • Maeng, seung-jin;Chanda, trivedi
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.788-791
    • /
    • 2008
  • On this study, following works have been carried out : division of Han River Basin into 24 sub basins, use of rainfall data of 151 stations to make spatial distribution of rainfall, selection of control points such as Soyanggang Dam, Chungju Dam, Chungju Release Control Dam, Heongseong Dam, Hwachun Dam, Chuncheon Dam, Uiam Dam, Cheongpyung Dam and Paldang Dam, selection of SSARR (Streamflow Synthesis and Reservoir Regulation) model as a hydrologic model, preparation of input data of SSARR model, sensitivity analysis of parameter using hydrologic data of 2002. The sensitivity analysis showed that soil moisture index versus runoff percent (SMI-ROP), baseflow infiltration index versus baseflow percent (BII-BFP) and surface-subsurface separation (S-SS) parameters are higher sensitive parameters to the simulation result.

  • PDF

Importance of Baseflow Separation and Nonpoint Source Pollutant Loadings through Baseflow for Efficient Watershed Managemen (효율적인 유역관리를 위한 기저유출 분리 및 기저비점의 중요성)

  • Han, Jeong Ho;Kum, Dong Hyuk;Kim, Jonggun;Lim, Kyoun Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.88-88
    • /
    • 2017
  • 유역에서의 효율적인 수량 및 수질 관리를 위해서는 정확한 수문 구성요소에 대한 이해가 선행되어야 한다. 유출 수문곡선을 이용한 많은 연구가 수행되었음에도 불구하고 정확한 기저유출 산정에 관한 연구는 매우 제한적으로 수행되어 왔다. 수문학교과서에 수록된 다양한 기저유출 방법은 실제 장기 유출 수문곡선에 적용하는데 한계가 있으며, 유역의 다양한 유출특성을 반영할 수 없다. 따라서 본 연구에서는 USGS에서 개발한 기저유출 분리 모형와 SWAT BFlow, 그리고 WHAT 시스템에 특성에 대해서 분석하였으며, 이러한 모형을 이용한 기저유출 분석의 한계점을 제시하였다. 정확한 기저유출 분리를 위해서는 유역의 감수곡선 특성을 반영한 기저유출 분리가 이루어져야 하며, 주지하수 감수곡선처럼 유역 대표 감수 특성을 이용하기 보다는 유황이나 계절별 감수특성을 고려한 김수 특성 인자에 대한 연구가 필요하다. 이외에도 유역에서 기저유출로 인한 오염부하 특성을 NO3-N을 중심으로 분석하여 정확한 기저유출 산정의 중요성을 제시하였다. 이와 같이 기저유출과 같은 수문 구성 요소에 대한 정확한 이해 없이는 효율적인 수량 및 수질 관리가 어려울 것으로 판단된다.

  • PDF

A Method of Estimating the Volume of Exploitable Groundwater Considering Minimum Desirable Streamflow (최소하천유출량을 고려한 지하수 개발가능량 산정방안)

  • Chung, Il-Moon;Lee, Jeongwoo
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.375-380
    • /
    • 2013
  • The concept of safe yield places an emphasis on balancing groundwater withdrawal with groundwater recharge but ignores naturally occurring groundwater discharge. Because streams and their alluvial aquifers are closely linked in terms of water supply and water quality, to be properly understood and managed they must be considered together. Therefore, some districts in Kansas have reevaluated their safe-yield policies to account for natural groundwater discharge and stream-aquifer interactions by amending their safe-yield regulations to include a portion of baseflow as the minimum desirable streamflow (MDS). This study proposes a modified safe-yield policy in which the drought flow is chosen as the MDS. Baseflow separation was conducted from streamflow hydrograph and the results are presented as a flow-duration curve. The exploitable groundwater can be determined by subtracting MDS from the cumulative baseflow. This method was tested in the Musimcheon watershed, which was validated for streamflow using the SWAT-K model. The annually averaged exploitable groundwater in the whole watershed was estimated to be 86 mm. The exploitable groundwater amounts were also estimated for each subwatershed in the Musimcheon watershed.

Improving Low Flow Estimation for Ungauged Basins in Korea (국내 미계측유역의 갈수량 산정 개선)

  • Cho, Tak-Guen;Lee, Kil-Seong;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.113-124
    • /
    • 2007
  • Low flow is a minimum flow discharging during a dry season in a unregulated stream which can be shared by nature and human being. It is also a standard flow that determines a diversion requirement by evaluating water supply ability of streamflow in the aspect of water use. Low flow indices are used as average low flow and 1-day 10-year low flow in Korea and Japan and as 7-day 10-year low flow in the United States of America and the United Kingdom. In this research, these three indices were compared by the data observed and generated. Although daily records are needed to calculate the low flow, gauging stations are limited and records of the dry season are insufficient in Korea. Drainage-area ratio method is mainly used in Korea to estimate the low flow. This research shows the guideline when the drainage-area ratio method, the regional regression method, and the baseflow correlation method to calculate the low flow of ungauged basins are applied and recommends low flow estimation method suitable to Korea.