• 제목/요약/키워드: Baseband Processor

Search Result 34, Processing Time 0.03 seconds

A Specialized Reader for High Speed UHF RFID Tag Inlay Inspection Equipment (고속 UHF RFID 태그 검사 장비를 위한 전용 리더)

  • Bae, Sung Woo;Park, Jun-Seok;Seong, Yeong Rak;Oh, Ha-Ryoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.63-69
    • /
    • 2014
  • RFIDs have not become widespread as expected partly due to the cost, size, read range, and reliability problems of tags. The success rate of reading must be improved in order for RFIDs to be widely adopted. Quality control of tags is crucial to meet this requirement. In this study, we designed and implemented a high-performance reader used in inspection equipment that conducts prior inspection of tags. To improve performance of the developed reader, the baseband modem and command processor (CP) were designed using H/W logic and implemented with FPGA. The inspection of small pitch inlays was made possible through the antenna shielding device and H/W command processor function. This equipment enables accurate evaluation of performance and identification of tags satisfying a given read range. By contributing to sort out defective tags, the results can ultimately lead to more stable RFID services.

DSP-Based Micro-Modem for Underwater Acoustic Communications (DSP 기반 초소형 수중 음향통신 모뎀)

  • Lee, Dongsoo;Lee, Sangmin;Park, Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.275-281
    • /
    • 2014
  • Recently, the need for various underwater application systems targeting efficient resource exploration and aquatic ecosystem monitoring is rapidly increasing in littoral sea and inland waters. In this paper, we focus on the research and development of digital module of acoustic micro modem which can be used for underwater mobile communication systems and underwater sensor network systems. Specifically, a digital module of acoustic modem embedding digital signal processor is designed and implemented. On top of the developed hardware platform, physical layer frame generation and recovery and channel coding algorithms are mounted and tested in a water tank and a pond to verify its functionality and performance. According to experimental results, less than 1 percent of total computational power is consumed in the processing of frame control and convolutional code with the data rate of 1 kbps. Thus, the performance of micro modem could be improved by loading efficient baseband algorithms into the processor while maintaining the implemented hardware.

Physical Layer Design of Dual-Band Guardian Modem based on Quasi-Orthogonal Code (유사 직교 부호 기반 이중 대역 Guardian 모뎀의 물리계층 설계)

  • Lee, Hyeon-Seok;Cho, Jin-Woong;Hong, Dae-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.127-132
    • /
    • 2013
  • In this paper, we design the physical layer of Guardian modem for wireless public networks. The physical layer is composed of a dual-band RF (Radio Frequency) transceiver and a baseband-processor with quasi-orthogonal codes. The 2.4/5GHz dual-band RF transceiver can overcome the communication difficulty of dense 2.4GHz band for wireless public environment. Also the quasi-orthogonal code can reduce the required ASIC (Application Specific Integrated Circuit) design area. Finally, we analyze the performance of the developed system in viewpoint of data rate, BER (Bit Error Rate), PER (Packet Error Rate). Moreover we verify the performance of the dual-band RF communication.

Design and Implementation of a Bluetooth Baseband Module with DMA Interface (DMA 인터페이스를 갖는 블루투스 기저대역 모듈의 설계 및 구현)

  • Cheon, Ik-Jae;O, Jong-Hwan;Im, Ji-Suk;Kim, Bo-Gwan;Park, In-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.98-109
    • /
    • 2002
  • Bluetooth technology is a publicly available specification proposed for Radio Frequency (RF) communication for short-range :1nd point-to-multipoint voice and data transfer. It operates in the 2.4㎓ ISM(Industrial, Scientific and Medical) band and offers the potential for low-cost, broadband wireless access for various mobile and portable devices at range of about 10 meters. In this paper, we describe the structure and the test results of the bluetooth baseband module with direct memory access method we have developed. This module consists of three blocks; link controller, UART interface, and audio CODEC. This module has a bus interface for data communication between this module and main processor and a RF interface for the transmission of bit-stream between this module and RF module. The bus interface includes DMA interface. Compared with the link controller with FIFOs, The module with DMA has a wide difference in size of module and speed of data processing. The small size module supplies lorr cost and various applications. In addition, this supports a firmware upgrade capability through UART. An FPGA and an ASIC implementation of this module, designed as soft If, are tested for file and bit-stream transfers between PCs.

Testable Design of RF-ICs using BIST Technique (BIST 기법을 이용한 RF 집적회로의 테스트용이화 설계)

  • Kim, Yong;Lee, Jae-Min
    • Journal of Digital Contents Society
    • /
    • v.13 no.4
    • /
    • pp.491-500
    • /
    • 2012
  • In this paper, a new loopback BIST structure which is effective to test RF transceiver chip and LNA(Low Noise Amplifier) in the chip is presented. Because the presented BIST structure uses a baseband processor in the chip as a tester while the system is under testing mode, the developed test technique has an advantage of performing test application and test evaluation in effectiveness. The presented BIST structure can change high frequency test output signals to a low frequency signals which can make the CUT(circuits under test) tested easily. By using this technique, the necessity of RF test equipment can be mostly reduced. The test time and test cost of RF circuits can be cut down by using proposed BIST structure, and finally the total chip manufacturing costs can be reduced.

Design of an NFC Baseband Modem for Software Overhead Minimization (소프트웨어 비용을 최소화하는 NFC 기저대 모뎀 설계)

  • Jun, Jaeyung;Kim, Seon Wook;Han, Youngsun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1547-1554
    • /
    • 2015
  • Because there are numerous near field communication (NFC) technical standards and each standard has an independent communication protocol, an NFC software for controlling the protocols are significantly complicated. Especially, the anticollision algorithm for establishing the initial communication connection is classified into bit-oriented or time slot method according to the technical standards. Moreover, the anticollision algorithm is generally manipulated in software because of its complexity. In addition, since one host processor is shared by multiple modems in a connectivity SoC, embedding several communication modems with an NFC modem, the spare computing resources can be utilized for other modems by reducing the software cost to control the NFC modem. In this paper, we propose new design methods of the NFC modem for supporting anticollision, framing and bit rate detection in the hardware to reduce the software overhead. Therefore, the utilization of the NFC technology is enhanced in the connectivity SoC by minimizing the cost of software.

Implementation of an Ultrasound Elasticity Imaging System

  • Cho Gae-Young;Yoon Ra-Young;Park Jeong-Man;Kwon Sung-Jae;Ahn Young-Bok;Bae Moo-Ho;Jeong Mok-Kun
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2006
  • Recently, active research has been going on to measure the elastic modulus of human soft tissue with medical ultrasound imaging systems for the purpose of diagnosing cancers or tumors which have been difficult to detect with conventional B-mode imaging techniques. In this paper, a real-time ultrasonic elasticity imaging system is implemented in software on a Pentium processor-based ultrasonic diagnostic imaging system. Soft tissue is subjected to external vibration, and the resulting tissue displacements change the phase of received echoes, which is in turn used to estimate tissue elasticity. It was confirmed from experiment with a phantom that the implemented elasticity imaging system could differentiate between soft and hard regions, where the latter is twice harder than the former, while operating at an adequate frame rate of 20 frames/s.

Implementation of an LFM-FSK Transceiver for Automotive Radar

  • Yoo, HyunGi;Park, MyoungYeol;Kim, YoungSu;Ahn, SangChul;Bien, Franklin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.258-264
    • /
    • 2015
  • The first 77 GHz transceiver that applies a heterodyne structure-based linear frequency modulation-frequency shift keying (LFM-FSK) front-end module (FEM) is presented. An LFM-FSK waveform generator is proposed for the transceiver design to avoid ghost target detection in a multi-target environment. This FEM consists of three parts: a frequency synthesizer, a 77 GHz up/down converter, and a baseband block. The purpose of the FEM is to make an appropriate beat frequency, which will be the key to solving problems in the digital signal processor (DSP). This paper mainly focuses on the most challenging tasks, including generating and conveying the correct transmission waveform in the 77 GHz frequency band to the DSP. A synthesizer test confirmed that the developed module for the signal generator of the LFM-FSK can produce an adequate transmission signal. Additionally, a loop back test confirmed that the output frequency of this module works well. This development will contribute to future progress in integrating a radar module for multi-target detection. By using the LFM-FSK waveform method, this radar transceiver is expected to provide multi-target detection, in contrast to the existing method.

A Study on Transmission Signal Design Using DAC to Reduce IQ Imbalance of Satellite-Mounted Synthetic Aperture Radar Transmitter (위성 탑재 영상레이다 송신기의 IQ 불균형 저감을 위한 DAC를 이용한 송신 신호 설계 기법에 관한 연구)

  • Lee, Young-Bok;Kang, Tae-Woong;Lee, Hyon-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.144-150
    • /
    • 2022
  • The on-board processor of satellite synthetic aperture radar(SAR) generates transmission signal by digital signal processing, converts it into an analog signal. At this time, the transmission signal generated from the baseband requires the frequency modulation to convert it to the high-frequency band in order to improve the stability. General frequency modulation method using local oscillator(LO) causes IQ imbalance due to phase error/magnitude error and these error reduce performance of SAR. To generate transmission signal without phase/magnitude error, this paper suggests design method of the frequency modulation method using digital to analog converter(DAC) at on-board SAR. For design, this paper analyzes the characteristic of DAC mode and uses pre-compensation filter. To analyze the proposed method performance, performance index are compared with IQ imbalance signals. This method is suitable for on-board SAR using fast sampling DAC and has the advantage of being able to solve IQ imbalances.

Implementation of an O-RAN-Compliant Base Station System Using Commercial Off-the-Shelf Components (상용 기성부품을 이용한 O-RAN 호환 기지국 시스템 구현)

  • Du, Hongxin;Zhang, Zhongfeng;Choi, Seungwon;Lee, Taehoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.1
    • /
    • pp.11-24
    • /
    • 2022
  • Open Radio Access Network (O-RAN) standard has been proposed to separate the baseband signal processing unit from the Radio Frequency (RF) unit at base station system mainly for reducing the cost of base station systems through open-source interfaces between the two units. To satisfy the performance metrics in various scenarios, several fronthaul functional split options were presented by O-RAN. Amongst these options, the split option 7-2x is widely adopted in practical applications due to its excellent trade-off between the required bandwidth and RU overhead. In this paper, we present a hardware implementation of a base station system that is compliant with the Category B of O-RAN split option 7-2x. It consists of O-DU and O-RU implemented with a commercial off-the-shelf Digital Signal Processor and RF transceiver, respectively. The performance of the proposed base station system is evaluated in terms of Bit Error Rate and received signal power as well as the required fronthaul bandwidth. Through various experimental tests, we have observed that the proposed system reduces the fronthaul bandwidth nearly by 89.7% compared to the conventional system that dose not employ the O-RAN standard.