• 제목/요약/키워드: BaseNet

검색결과 325건 처리시간 0.023초

GYAGG/6LiF composite scintillation screen for neutron detection

  • Fedorov, A.;Komendo, I.;Amelina, A.;Gordienko, E.;Gurinovich, V.;Guzov, V.;Dosovitskiy, G.;Kozhemyakin, V.;Kozlov, D.;Lopatik, A.;Mechinsky, V.;Retivov, V.;Smyslova, V.;Zharova, A.;Korzhik, M.
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1024-1029
    • /
    • 2022
  • Composite scintillation screens on a base of Gd1.2Y1.8Ga2.5Al2.5O12:Ce (GYAGG) scintillator have been evaluated for neutron detection. Besides the powdered scintillator, the composite includes 6LiF particles; both are merged with a binder and deposited onto the light-reflecting aluminum substrate. Results obtained demonstrates that screens are suitable for use with a silicon photomultiplier readout to create a prospective solution for a compact and low-cost thermal neutron sensor. Composite GYAGG/6LiF scintillation screen shows a pretty matched sensitivity and γ-background rejection with a widely used ZnS/6LiF screens however, possesses forty times faster response.

Monte Carlo simulation and study of REE/PET composites with wide γ-ray protection

  • Tongyan Cui;Ruixin Chen;Shumin Bi;Rui Wang;Zhongjian Ma;Qingxiu Jia
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2919-2926
    • /
    • 2023
  • In this paper, rare earth element (REE)/polyester composites were designed with lanthanum oxide, gadolinium oxide, and lutetium oxide as ray shielding agents, and polyethylene terephthalate (PET) as the base. Monte Carlo simulation was carried out using FLUKA software. We found that the radiation protection performance of the composite is affected by the type and amount of REE; a higher amount of REE equated to a better radiation protection performance of the composite. When the thickness of the composite and total thickness of the REE is constant, the number of superimposed layers inside the composite does not affect its shielding performance. Compared with a single-type REE/PET composite, a mixed-type REE/PET composite has a wider range of γ-ray absorption and better radiation protection performance. When the mass ratio of PET to REE is 2:8 and different types of REE are mixed with equal mass, several 0.2 cm-thick mixed-type REE/PET composites can shield >70% of 60 and 80 KeV γ-rays.

Channel Transfer Function estimation based on Delay and Doppler Profiler for 5G System Receiver targeting 500km/h linear motor car

  • Suguru Kuniyoshi;Shiho Oshiro;Gennan Hayashi;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.121-127
    • /
    • 2023
  • A 500 km/h linear motor high speed terrestrial transportation service is planned to launch 2027 in Japan. In order to support 5G service in the train, the Sub-carrier spacing frequency of 30 kHz is planned to be used instead of common 15 kHz sub-carrier spacing to mitigate Doppler effect in such high-speed transportation. In addition, to increase the cell size of 5G mobile system, plural Base Station antenna will transmit the identical Down Link (DL) signal to form the expanded cell size along the train rail. In this situation, forward and backward antenna signals will be Doppler shifted by reverse direction respectively and the receiver in the train might suffer to estimate accurate Channel Transfer Function (CTF) for its demodulation. In this paper, Delay and Doppler Profiler (DDP) based Channel Estimator is proposed and it is successfully implemented in signal processing simulation system. Then the simulated performances are compared with the conventional Time domain linear interpolated estimator. According to the simulation results, QPSK modulation can be used even under severe channel condition such as 500 km/h, 2 path reverse Doppler Shift condition, although QPSK modulation can be used less than 200 km/h with conventional Channel estimator.

Effect of mitigation strategies in the severe accident uncertainty analysis of the OPR1000 short-term station blackout accident

  • Wonjun Choi;Kwang-Il Ahn;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4534-4550
    • /
    • 2022
  • Integrated severe accident codes should be capable of simulating not only specific physical phenomena but also entire plant behaviors, and in a sufficiently fast time. However, significant uncertainty may exist owing to the numerous parametric models and interactions among the various phenomena. The primary objectives of this study are to present best-practice uncertainty and sensitivity analysis results regarding the evolutions of severe accidents (SAs) and fission product source terms and to determine the effects of mitigation measures on them, as expected during a short-term station blackout (STSBO) of a reference pressurized water reactor (optimized power reactor (OPR)1000). Three reference scenarios related to the STSBO accident are considered: one base and two mitigation scenarios, and the impacts of dedicated severe accident mitigation (SAM) actions on the results of interest are analyzed (such as flammable gas generation). The uncertainties are quantified based on a random set of Monte Carlo samples per case scenario. The relative importance values of the uncertain input parameters to the results of interest are quantitatively evaluated through a relevant sensitivity/importance analysis.

Possible power increase in a natural circulation Soluble-Boron-Free Small Modular Reactor using the Truly Optimized PWR lattice

  • Steven Wijaya;Xuan Ha Nguyen;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.330-338
    • /
    • 2023
  • In this study, impacts of an enhanced-moderation Fuel Assembly (FA) named Truly Optimized PWR (TOP) lattice, which is modified based on the standard 17 × 17 PWR FA, are investigated in a natural circulation Soluble-Boron-Free (SBF) Small Modular Reactor (SMR). Two different TOP lattice designs are considered for the analysis; one is with 1.26 cm pin pitch and 0.38 cm fuel pellet radius, and the other is with 1.40 cm pin pitch and 0.41 cm fuel pellet radius. The NuScale core design is utilized as the base model and assumed to be successfully converted to an SBF core. The analysis is performed following the primary coolant circulation loop, and the reactor is modelled as a single channel for thermal-hydraulic analyses. It is assumed that the ratio of the core pressure drop to the total system pressure drop is around 0.3. The results showed that the reactor power could be increased by 2.5% and 9.8% utilizing 1.26/0.38 cm and 1.40/0.41 cm TOP designs, respectively, under the identical coolant inlet and outlet temperatures as the constraints.

BEPU analysis of a CANDU LBLOCA RD-14M experiment using RELAP/SCDAPSIM

  • A.K. Trivedi;D.R. Novog
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1448-1459
    • /
    • 2023
  • A key element of the safety analysis is Loss of Coolant Analysis (LOCA) which must be performed using system thermal-hydraulic codes. These codes are extensively validated against separate effect and integral experiments. RELAP/SCDAPSIM is one such code that may be used to predict LBLOCA response in a CANDU reactor. The RD-14M experiment selected for the Best Estimate Plus Uncertainty study is a 44 mm (22.7%) inlet header break test with no Emergency Coolant Injection. This work has two objectives first is to simulate pipe break with RELAP and compare these results to those available from experiment and from comparable TRACE calculations. The second objective is to quantify uncertainty in the fuel element sheath (FES) temperature arising from model coefficient as well as input parameter uncertainties using Integrated Uncertainty Analysis package. RELAP calculated results are found to be in good agreement with those of TRACE and with those of experiments. The base case maximum FES temperature is 335.5 ℃ while that of 95% confidence 95th percentile is 407.41 ℃ for the first order Wilk's formula. The experimental measurements fall within the predicted band and the trends and sensitivities are similar to those reported for the TRACE code.

Numerical Analysis of the Effect of a Three-Dimensional Baffle Structure with Variable Cross-Section on the Parallel Flow Field Performance of PEMFC

  • Xuejian Pei;Fayi Yan;Jian Yao;He Lu
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.333-348
    • /
    • 2023
  • In this study, a 3D model of the proton exchange membrane fuel cell is established, and a new 3D baffle structure is designed, which is combined with the parallel flow field and then optimized by numerical simulation methods. The number of baffles and the cross-sectional trapezoidal base angle are taken as the main variables, and their impacts on the performance indexes of the cathode side are analyzed. The results show that the 3D baffle can facilitate the convection and diffusion mass transfer of reactants, improve the uniformity of oxygen distribution, enhance the drainage capacity, and make the cell performance superior; however, too small angle will lead to excessive local convective mass flux, resulting in the decrease of the overall uniformity of oxygen distribution and lowering the cell performance. Among them, the optimal number of baffles and angle are 9 and 58°, respectively, which improves the net output power density by 10.8% than conventional flow field.

First Record of Longarm Mullet Moolgarda cunnesius (Valenciennes, 1836) (Mugiliformes: Mugilidae) in Korea (한국산 숭어과(Mugilidae) 어류, Moolgarda cunnesius (Valenciennes, 1836)의 첫기록)

  • Yeon-Ju Seo;Jin-Koo Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제56권6호
    • /
    • pp.909-915
    • /
    • 2023
  • A specimen of longarm mullet Moolgarda cunnesius (Valenciennes, 1836) belonging to the family Mugilidae was collected from Yerae-dong, Seogwipo-si, Jeju-do Island, Korea, on July 19, 2023, using a hand net. The specimen was identified as Moolgarda cunnesius based on its morphological traits, including pectoral fin reaching the third or fourth spine of the first dorsal fin, anal fin higher than the first and second dorsal fin, two dorsal and caudal fin membranes with small melanophores, and a slightly convex interorbital region. Furthermore, molecular analysis, specifically comparison of the 623 base pairs of mitochondrial DNA COI sequences, confirmed that our specimen perfectly matched M. cunnesius. It is well known that the species is widely distributed in the Indo-West Pacific Ocean, including the Red Sea, Taiwan, and northern Australia, and this study shows that it also inhabits the Jeju-do Island, Korea. Additionally, we propose a new Korean name 'gin-pal-sung-eo' for this species.

Approach to diagnosing multiple abnormal events with single-event training data

  • Ji Hyeon Shin;Seung Gyu Cho;Seo Ryong Koo;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.558-567
    • /
    • 2024
  • Diagnostic support systems are being researched to assist operators in identifying and responding to abnormal events in a nuclear power plant. Most studies to date have considered single abnormal events only, for which it is relatively straightforward to obtain data to train the deep learning model of the diagnostic support system. However, cases in which multiple abnormal events occur must also be considered, for which obtaining training data becomes difficult due to the large number of combinations of possible abnormal events. This study proposes an approach to maintain diagnostic performance for multiple abnormal events by training a deep learning model with data on single abnormal events only. The proposed approach is applied to an existing algorithm that can perform feature selection and multi-label classification. We choose an extremely randomized trees classifier to select dedicated monitoring parameters for target abnormal events. In diagnosing each event occurrence independently, two-channel convolutional neural networks are employed as sub-models. The algorithm was tested in a case study with various scenarios, including single and multiple abnormal events. Results demonstrated that the proposed approach maintained diagnostic performance for 15 single abnormal events and significantly improved performance for 105 multiple abnormal events compared to the base model.

An extensive characterization of xenon isotopic activity ratios from nuclear explosion and nuclear reactors in neighboring countries of South Korea

  • Ser Gi Hong;Geon Hee Park;Sang Woo Kim;Yu Yeon Cho
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.601-610
    • /
    • 2024
  • This paper gives an extensive analysis on the characterization of xenon isotopic ratios for various nuclear reactors and nuclear explosions through neutronic depletion codes. The results of the characterization can be used for discriminating the sources of the xenon isotopes' release among the nuclear explosions and nuclear reactors. The considered sources of the xenon radionuclides do not only include PWR, CANDU, and nuclear explosions using uranium and plutonium bombs, but also IRT-200 and 5MWe Yongbyon (MAGNOX reactor) research reactors operated in North Korea. A new data base (DB) on xenon isotopic activity ratios was produced using the results of the characterization, which can be used in discrimination of the sources of xenon isotopes. The results of the study show that 5MWe Yongbyon reactor has quite different characteristics in 135Xe/133Xe ratio from the PWRs and the nuclear reactors have different characteristics in 135Xe/133Xe ratios from the nuclear explosions.