Browse > Article
http://dx.doi.org/10.1016/j.net.2021.09.024

GYAGG/6LiF composite scintillation screen for neutron detection  

Fedorov, A. (Institute for Nuclear Problems of Belarus State University)
Komendo, I. (NRC "Kurchatov Institute")
Amelina, A. (NRC "Kurchatov Institute")
Gordienko, E. (NRC "Kurchatov Institute")
Gurinovich, V. (ATOMTEX SPE)
Guzov, V. (ATOMTEX SPE)
Dosovitskiy, G. (NRC "Kurchatov Institute")
Kozhemyakin, V. (ATOMTEX SPE)
Kozlov, D. (Institute for Nuclear Problems of Belarus State University)
Lopatik, A. (ATOMTEX SPE)
Mechinsky, V. (Institute for Nuclear Problems of Belarus State University)
Retivov, V. (NRC "Kurchatov Institute")
Smyslova, V. (NRC "Kurchatov Institute" - IREA)
Zharova, A. (NRC "Kurchatov Institute" - IREA)
Korzhik, M. (Institute for Nuclear Problems of Belarus State University)
Publication Information
Nuclear Engineering and Technology / v.54, no.3, 2022 , pp. 1024-1029 More about this Journal
Abstract
Composite scintillation screens on a base of Gd1.2Y1.8Ga2.5Al2.5O12:Ce (GYAGG) scintillator have been evaluated for neutron detection. Besides the powdered scintillator, the composite includes 6LiF particles; both are merged with a binder and deposited onto the light-reflecting aluminum substrate. Results obtained demonstrates that screens are suitable for use with a silicon photomultiplier readout to create a prospective solution for a compact and low-cost thermal neutron sensor. Composite GYAGG/6LiF scintillation screen shows a pretty matched sensitivity and γ-background rejection with a widely used ZnS/6LiF screens however, possesses forty times faster response.
Keywords
Neutron; Gadolinium; Lithium; Scintillator; Detector; Screen;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P.G. Kontz, G.F. Keepin, Zn(S) Phosphor mixtures for neutron scintillation counting, Los Alamos CIC-14 report reproduction copy LA-1663 (1954) 17.
2 ZnS (Ag), Zinc sulfide scintillation material. Bicron data sheet, Available from: http://www.hep.ph.ic.ac.uk/fets/pepperpot/docs+papers/zns_602.pdf.
3 J. Ueda, S. Tanabe, Review of luminescent properties of Ce3+-doped garnet phosphors: new insight into the effect of crystal and electronic structure, Opt. Mater. X. 1 (2019) 100018-100037.
4 W.M. Higgins, J. Glodo, E. Van Loef, M. Klugerman, Bridgman growth of LaBr3: Ce and LaCl3: Ce crystals for high-resolution gamma-ray spectrometers, J. Cryst. Growth 287 (2006) 239.   DOI
5 W.M. Higgins, A. Churilov, E. Van Loef, J. Glodo, Crystal growth of large diameter LaBr3: Ce and CeBr3, J. Cryst. Growth 310 (2008) 2085.   DOI
6 N.J. Cherepy, G. Hull, A.D. Drobshoff, S.A. Payne, Strontium and barium iodide high light yield scintillators, Appl. Phys. Lett. 92 (2008), 083508.   DOI
7 Y. Yokota, K. Nishimoto, S. Kurosawa, D. Totsuka, Crystal growth of Eu: SrI2 single crystals by micro-pulling-down method and the scintillation properties, J. Cryst. Growth 375 (2013) 49.   DOI
8 K. Kamada, et al., 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12, J. Cryst. Growth 352 (2012) 88-90.   DOI
9 K. Kamada, et al., Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties, Opt. Mater. 36 (2014) 1942-1945.   DOI
10 M. Korzhik, V. Alenkov, O. Buzanov, et al., Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5-Y0.5) 3Al2Ga3O12:Ce,Mg, CrystEngComm 22 (2020) 2502-2507.   DOI
11 M. Korzhik, A. Boscovich, A. Fedorov, et al., The scintillation mechanisms in Ce and Tb doped (GdxY1-x) Al2Ga3O12 quaternary garnet structure crystalline ceramics, J. Lumin. 234 (2021) 117933.   DOI
12 Chewpraditkul Weerapong, Scintillation characteristics of Mg2+-codoped Y0.8Gd2.2Al2Ga3O12:Ce single crystal, in: Presented at SCINT2019, 29 September-4 October 2019 (Sendai, Japan).
13 G. Dosovitskiy, P. Karpyuk, E. Gordienko, et al., Neutron detection by Gd-loaded garnet ceramic scintillators, Radiat. Meas. 126 (2019) 106133.   DOI
14 V.I. Mikerov, I.A. Zhitnik, J.N. Barmako, E.P. Bogolubov, Prospects for efficient detectors for fast neutron imaging, Appl. Radiat. Isot. 61 (2004) 529-535.   DOI
15 R. Zboray, R. Adams, M. Morgano, Qualification and development of fast neutron imaging scintillator screens, Nucl. Instrum. Methods Phys. Res. A. 930 (2019) 142-150.   DOI
16 N. Kardjilov, M. Dawson, A. Hilger, A highly adaptive detector system for high resolution neutron imaging, Nucl. Instrum. Methods Phys. Res. A. 651 (2011) 95-99.   DOI
17 A. Osovizky, K. Pritchard, J. Ziegler, et al., LiF:ZnS(Ag) mixture optimization for a highly efficient ultrathin cold neutron detector, IEEE Trans. Nucl. Sci. 65 (2018) 1025-1032.   DOI
18 Y. Yehuda-Zada, K. Pritchard, J.B. Ziegler, et al., Optimization of 6LiF:ZnS(Ag) scintillator light yield using GEANT4, Nucl. Instrum. Methods Phys. Res. A 892 (2018) 59-69.   DOI
19 NaI(Tl), Polyscin NaI(Tl), Sodium iodide scintillation material. Saint Gobain data sheet, Available from: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/sodium-iodide-material-data-sheet_0.pdf.
20 V.B. Mikhailik, et al., Investigation of luminescence and scintillation properties of ZnS-Ag/6liF scintillator in the 7-295 K temperature range, J. Lumin. 134 (2013) 63-66.   DOI
21 A. Osovizky, K. Pritchard, Y. Yehuda-Zada, et al., Selection of silicon photomultipliers for a 6LiF:ZnS(Ag) scintillator based cold neutron detector, J. Phys. Commun. 2 (2018), 045009.   DOI
22 M. Korzhik, Ce doped garnet structure crystalline scintillation materials for HEP instrumentation, J. Inst. Met. 15 (2020) C08001.
23 M. Korzhik, et al., Compact and effective detector of the fast neutrons on a base of Ce doped Gd3Al2Ga3O12 scintillation crystal, IEEE Trans. Nucl. Sci. 66 (2018) 536-540.   DOI
24 M.P. Taggart, M. Nakohostin, P.J. Sellin, Investigation into the potential of GAGG:Ce as a neutron detector, Nucl. Instrum. Methods Phys. Res. A 931 (2019) 121-126.   DOI
25 A. Fedorov, V. Gurinovich, V. Guzov, et al., Sensitivity of GAGG based scintillation neutron detector with SiPM readout, Nucl. Eng. Tech. 52 (2020) 2306-2312.   DOI
26 TDR 1100-11 Epoxy Adhesive, Advanced materials technical datasheet, Available from: https://us.aralditeadhesives.com/us/adhesives/request-a-tds/228-tdr-1100-11-us-e/file.html.
27 E. Gordienko, A. Fedorov, E. Radiuk, et al., Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield, Opt. Mater. 78 (2018) 312-318.   DOI
28 P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detecting Systems, Springer, 2017.
29 M. Korjik, V. Alenkov, A. Borisevich, et al., Significant improvement of GAGG: Ce based scintillation detector performance with temperature decrease, Nucl. Instr. and Meth. in Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 871 (2017) 42-46.   DOI
30 Lithium-6 based screens for detection and imaging of thermal neutrons. Scintacor data sheet, Available from: https://scintacor.com/wp-content/uploads/2015/09/Datasheet-Neutron-Screens-High-Res.pdf.