• 제목/요약/키워드: Base-Isolated Systems

검색결과 92건 처리시간 0.02초

마찰지진격리장치와 구조물의 응답제어: 강체질량모델에서의 적용 (Response Control of Structure by Frictional Base Isolation System : Rigid-Mass Model)

  • 김재관;이원주;김영중;김병현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.426-431
    • /
    • 2001
  • Seismic performance of base isolated rigid-mass model were studied through shaking table tests. Friction pendulum systems (FPS), pure-friction systems with laminated rubber bearing (LRB) were selected for the comparison of performance. Performance of specially designed isolation systems were tested statically using actuator and dynamically using shaking table. Numerical methods were developed to simulate the nonlinear behavior of the frictional base isolation systems. Two models were considered. one is modified Bouc-Wen model considering breakaway coefficient of friction and the other is classical Coulomb model. The results of numerical methods are found to be in very good agreement with test results.

  • PDF

Efficient optimal design of passive structural control applied to isolator design

  • Kamalzare, Mahmoud;Johnson, Erik A.;Wojtkiewicz, Steven F.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.847-862
    • /
    • 2015
  • Typical base isolated buildings are designed so that the superstructure remains elastic in design-level earthquakes, though the isolation layer is often quite nonlinear using, e.g., hysteretic elements such as lead-rubber bearings and friction pendulum bearings. Similarly, other well-performing structural control systems keep the structure within the linear range except during the most extreme of excitations. Design optimization of these isolators or other structural control systems requires computationally-expensive response simulations of the (mostly or fully) linear structural system with the nonlinear structural control devices. Standard nonlinear structural analysis algorithms ignore the localized nature of these nonlinearities when computing responses. This paper proposes an approach for the computationally-efficient optimal design of passive isolators by extending a methodology previously developed by the authors for accelerating the response calculation of mostly linear systems with local features (linear or nonlinear, deterministic or random). The methodology is explained and applied to a numerical example of a base isolated building with a hysteretic isolation layer. The computational efficiency of the proposed approach is shown to be significant for this simple problem, and is expected to be even more dramatic for more complex systems.

지진절연 건물내 유체동적효과가 큰 수중계의 지진응답특성 (Seismic Response Characteristics of Submerged Systems with Large Hydrodynamic Effect in Base-isolated Structure)

  • Shin, Tae-Myung;Kim, Kwang-Joon
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.655-661
    • /
    • 1997
  • 건물내 동적계가 수중에 있고 유체동적효과가 클 경우, 건물을 지진절연하면 일반적인 경향과는 달리 계의 지진응답이 오히려 증가될 수 있다. 본 논문에서는 건물내 수조에 잠긴 계에 대하여 단순화된 복합모델의 동적해석을 통하여 건물의 지진절연이 건물내 수중계의 지진응답에 어떻게 그리고, 최대로 얼마나 영향을 주는지를 보인다. 이 때 응답을 줄이기 위한 내진설계방안으로서 유체질량효과를 조절하는 유체간극의 최적화를 수행하여 그 효과를 살펴보았고, 간극조절이 곤란한 경우의 대안으로서 지진절연된 건물내 수중계를 다시 지진절연하는 방안을 제안하였으며 적절한 이중절연방식의 조합에 대한 효율을 비교하였다.

  • PDF

End-point control of a flexible arm under base fluctuation

  • Chonan, Seiji;Sato, Hidehiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.600-605
    • /
    • 1989
  • A theoretical study is presented for the end-point holding control of a one-link flexible arm, whose base is subjected to a lateral fluctuation. The arm is clamped on a rigid hub mounted directly on the shaft of d.c. servomoter. The tip position is measured by a gap sensor fixed in space isolated from the system vibration. The arm is controlled so as to make the end point stay precisely at its initial position even if the base is fluctuated.

  • PDF

건물기초의 절연이 내부수중구조물의 지진응답에 미치는 영향 (Influence of Building Base-Isolation on Seismic Response of Submerged Internal Systems)

  • 신태명
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.125-134
    • /
    • 1996
  • 건물기초를 지진절연하면 건물뿐만 아니라 그 내부구조물의 지진응답도 크게 감소한다는 사실이 많은 연구를 통해 확인되어 왔다. 그런데 이러한 내부구조물이 유체내에 잠기고 부가질량효과가 크게 작용되는 조건에 놓이는 경우 오히려 지진응답이 증가할 수 있다. 본 논문은 건물 내 수중구조물의 지진해석을 통해 그러한 예를 제시하고자 한다. 해석결과 지진절연된 건물의 경우 이러한 내부 수중구조물의 지진응답이 상당히 증가할 수 있기 때문에 이에 대한 조치가 필요함을 보였고, 적절한 설계에 의하여 부가질량효과를 조절함으로써 어느정도 응답을 줄일 수 있다는 사실을 알 수 있었다.

  • PDF

감진계통 지지부가 설치된 기기의 지진해석 (Seismic Response Analysis of Support-Isolated Equipment in Primary Structure)

  • 김영상;이동근
    • 대한토목학회논문집
    • /
    • 제12권2호
    • /
    • pp.35-42
    • /
    • 1992
  • 본 논문에서는 주 구조물 내에 설치된 기기의 지지점에 감진계통을 도입함으로써 지진하중에 대한 기기의 응답감소효과를 연구하였으며, 효율적인 해석을 수행하기 위해 구조물-기기 상호작용 고려 및 축소 행렬방법을 이용한 전산프로그램(KBISAP)을 개발하였다. 지지점에 감전장치가 설치된 기기의 지진하중에 대한 응답감소 효율성을 평가하기 위해 세가지 해석모델, 즉 고정기초구조물 상의 지지점이 고정된 기기, 감진기초구조물 상의 지지점이 고정된 기기 및 고정기초구조물 상의 지지점에 감진계통이 설치된 기기를 채택한 예제해석 결과, 본 논문에서 채택한 방법이 일반적인 고정기초구조물은 물론 감진기초구조물 상에 설치된 기기의 지진하중에 대한 응답감소 보다 더 효율적임을 알 수 있었다. 따라서 본 방법은 기기의 응답감소는 물론 중요한 기기의 안전성 향상에 효과적이다.

  • PDF

Seismic poundings of multi-story buildings isolated by TFPB against moat walls

  • Shakouri, Ayoub;Amiri, Gholamreza Ghodrati;Miri, Zahra Sadat;Lak, Hamed Rajaei
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.295-307
    • /
    • 2021
  • The gap provided between adjacent structures in the metropolitan cities is mostly narrow due to architectural and financial issues. Consequently, structural pounding occurs between adjacent structures during earthquakes. It causes damages, ranging from minor local to more severe ones, especially in the case of seismically isolated buildings, due to their higher displacements. However, due to the increased flexibility of isolated buildings, the problem could become more detrimental to such structures. The effect of the seismic pounding of moat walls on the response of buildings isolated by Triple Friction Pendulum Bearing (TFPB) is investigated in this paper. To this propose, two symmetric three-dimensional models, including single-story and five-story buildings, are modeled in Opensees. Nonlinear Time History Analyses (NTHA) are performed for seismic evaluation. Also, five different sizes with four different sets of friction coefficients are considered for base isolators to cover a whole range of base isolation systems with various geometry configurations and fundamental period. The results are investigated in terms of base shear, buildings' drift, and roof acceleration. Results indicated a profound effect of poundings against moat walls. In situations of potential pounding, in some cases, the influence of impact on seismic responses of multistory buildings was more remarkable.

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

MR 감쇠기를 적용한 기초격리구조물의 지진응답 (Seisminc Response of Base Isolated Structures with MR Dampers)

  • 고봉준;황인호;이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.505-512
    • /
    • 2003
  • As large structures such as highrise buildings and cable-stayed bridges become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, the seismic performance of M dampers are studied and compared with that of the NZ system as a base isolation system As the control algorithm of the MR damper, the clipped-optimal control(applied LQR method) is employed. A five-story building is modeled and the seismic performance of the two systems subjected to three different earthquakes is compared. The results show that the M damper system can provide superior protection than the NZ system for a wide range of ground motions.

  • PDF

Evaluation of a new proposed seismic isolator for low rise masonry structures

  • Kakolvand, Habibollah;Ghazi, Mohammad;Mehrparvar, Behnam;Parvizi, Soroush
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.481-493
    • /
    • 2021
  • Low rise masonry structures are relatively inexpensive and easier to construct compared to other types of structures such as steel and reinforced concrete buildings. However, masonry structures are relatively heavier and less ductile and more vulnerable to damages in earthquakes. In this research, a new innovative low-cost seismic isolator using steel rings (SISR) is employed to reduce the seismic vulnerability of masonry structures. FEA of a masonry structure, made of concrete blocks is used to evaluate the effect of the proposed SISR on the seismic response of the structure. Two systems, fixed base and isolated from the base with the proposed SISRs, are considered. Micro-element approach and ABAQUS software are used for structural modeling. The nonlinear structural parameters of the SISRs, extracted from a recent experimental study by the authors, are used in numerical modeling. The masonry structure is studied in two separate modes, fixed base and isolated base with the proposed SISRs, under Erzincan and Imperial Valley-06 earthquakes. The accelerated response at the roof level, as well as the deformation in the masonry walls, are the parameters to assess the effect of the proposed SISRs. The results show a highly improved performance of the masonry structure with the SISRs.