• Title/Summary/Keyword: Base temperature

Search Result 1,811, Processing Time 0.035 seconds

Effects of 37℃ Carbon Dioxide Pneumoperitoneum on Core Body Temperature, Systolic Blood Pressure, Heart Rate and Acid-Base Balance: A Randomized Double-blind Controlled Trial (복강경 수술에서 기복제 이산화탄소의 37℃ 가온이 수술 중 체온, 수축기압 및 심박동수와 산염기 균형에 미치는 영향)

  • Park, Jin il;Yoon, Haesang
    • Journal of Korean Biological Nursing Science
    • /
    • v.19 no.2
    • /
    • pp.76-85
    • /
    • 2017
  • Purpose: The purpose of this study was to compare the effects of $21^{\circ}C\;CO_2$ and $37^{\circ}C\;CO_2$ pneumoperitoneum on body temperature, blood pressure, heart rate, and acid-base balance. Methods: Data were collected at a 1300-bed university hospital in Incheon, from February through September 2012. A total of 74 patients who underwent laparoscopic colectomy under general anesthesia with desflurane were randomly allocated to either a control group or an experimental group. The control group received $21^{\circ}C\;CO_2$ pneumoperitoneum; the experimental group received $37^{\circ}C\;CO_2$ pneumoperitoneum. The pneumoperitoneum of the two groups was under abdominal pressure 15 mmHg. Body temperature, systolic blood pressure, heart rate and acid-base balance were assessed at 30 minutes and 90 minutes after pneumoperitoneum, and again at 30 minutes after arriving at the Post Anesthesia Care Unit. Results: Body temperature in the $37^{\circ}C\;CO_2$ pneumoperitoneum group was significantly higher (F= 9.43, p< .001) compared to the $21^{\circ}C\;CO_2$ group. However, there were no statistically significant differences in systolic blood pressure (p= .895), heart rate (p= .340), pH (p= .231), PaCO2 (p= .490) and HCO3- (p= .768) between the two groups. Conclusion: Pneumoperitoneum of $37^{\circ}C\;CO_2$ is effective for the increase of body temperature compared to pneumoperitonium of $21^{\circ}C\;CO_2$, and it does not result in a decrease of blood pressure, heart rate or acid-base imbalance.

Dissolution Phenomenon of the Base Metal during TLP Bonding Using the Modified Base Metal Powder and Ni Base Filler Metal Powder (유사 조성의 모재분말과 Ni기 삽입금속 혼합분말을 사용한 천이액상확산 접합 시 모재의 용해현상)

  • Song, Woo-Young;Ye, Chang-Ho;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.64-71
    • /
    • 2007
  • The dissolution phenomenon of the solid phase powder and base metal by liquid phase insert metal during Transient Liquid Phase bonding using the mixed powder composed of the modified GTD111(base metal) powder and the GNi3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder was investigated. In case of the mixed powder contains modified GTD111 powder 50wt%, all of the powder was melted by liquid phase at 1423K. At the temperature between solidus and liquidus of GNi3, liquid phase penetrated into the boundary of the modified GTD111 powder and solid particle separated from powder was melted easily because area of reaction was increased. With increasing mixing ratio of the modified GTD111, it needed the higher temperature to melt all of the modified GTD111 powder. During Transient Liquid Phase bonding using the mixed powder composed of the modified GTD111 50wt% and GNi3 50wt% as insert metal, width of the bonded interlayer was increased with increasing bonding temperature by reaction of the base metal and liquid phase in insert metal. Dissolution of the base metal and modified powder by liquid phase progressed all together and after all of the powder was melted nearly, the dissolution of the base metal occurred quickly.

Heat Treatment of Superalloys for High Temperature Applications (고온구조용 초내열합금 열처리)

  • Park, Nho-Kwang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.341-348
    • /
    • 2003
  • Superalloys which can be devided into three categohes, i.e. Ni-base, Co-base, and Fe-base alloys are widely used for high temperature applications. Since superalloys contain many alloying elements and precipitates, its chemistry and processing parameters need to be carefully designed. In this review, current state-of-the art in the superalloy technologies is described with special attention to the heat-treatment for the control of the microstructures and mechanical properties.

Performance Analysis of Strength Development of FRC Base Depending on Maturity (적산온도에 의한 FRC 기층의 강도발현 성능 분석)

  • Choi, Sung-Yong;Park, Young-Hwan;Jung, Woo-Tai
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • PURPOSES : In this study, we analyzed the compressive strength characteristics of lean base concrete in relation to changes in the outdoor temperature after analyzing the cold and hot weather temperature standards and calculated the minimum and maximum temperatures when pouring concrete. We examined the rate of strength development of lean base concrete in relation to the temperature change and derived an appropriate analysis formula for FRC base structures by assigning the accumulated strength data and existing maturity formula. METHODS : We measured the strength changes at three curing temperatures (5, 20, and $35^{\circ}C$) by curing the concrete in a temperature range that covered the lowest temperature of the cold period, $5^{\circ}C$, to the highest temperature of the hot period, $35^{\circ}C$. We assigned the general lean concrete and FRC as test variables. A strength test was planned to measure the strength after 3, 5, 7, 14, and 28 days. RESULTS : According to the results of compressive strength tests of plain concrete and FRC in relation to curing temperature, the plain concrete had a compressive strength greater than 5 MPa at all curing temperatures on day 5 and satisfied the lean concrete standard. In the case of FRC, because the initial strength was substantially reduced as a result of a 30% substitution of fly ash, it did not satisfy the strength standard of 5 MPa when it was cured at $5^{\circ}C$ on day 7. In addition, because the fly ash in the FRC caused a Pozzolanic reaction with the progress into late age, the amount of strength development increased. In the case of a curing temperature of $20^{\circ}C$, the FRC strength was about 66% on day 3 compared with the plain concrete, but it is increased to about 77% on day 28. In the case of a curing temperature of $35^{\circ}C$, the FRC strength development rate was about 63% on day 3 compared with the plain concrete, but it increased to about 88% on day 28. CONCLUSIONS : We derived a strength analysis formula using the maturity temperatures with all the strength data and presented the point in time when it reached the base concrete standard, which was 5 MPa for each air temperature. We believe that our findings could be utilized as a reference in the construction of base concrete for a site during a cold or hot weather period.

The Characteristics of the Strength Development and Chloride Attack Resistance on the Concrete using High Early Strength Cement by Steam Curing Temperature Condition (증기양생 온도조건에 따른 조강시멘트 콘크리트의 강도발현특성 및 내염특성)

  • Lee Woong Jong;Lee Won Am;Um Tae Sun;Lee Jong Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.599-602
    • /
    • 2005
  • In this research, the characteristics of the strength development and chloride attack resistance on the concrete using high early strength cement by steam curing temperature condition were studied. As a result, It is observed that the early strength(16hr) is increasing and the strength of 28 days is decreasing, according as the rising of the steam curing temperature without the kinds of base cement(OPC and high early strength cement). On the other hand, it is observed that the more the contents of the unit binder(base cement + GGBF) is abundant, the more the steam curing temperature can be reduced in case of the high early strength. Also, the chloride attack resistance is improved according as the amount of GGBF is increased with the kinds of base cement(OPC and high early strength cement).

  • PDF

Effect of Bonding Temperature and Heating Rate on Transient Liquid Phase Diffusion Bonding of Ni-Base Superalloy (니켈기 초내열 합금의 천이액상확산접합 특성에 미치는 접합 온도 및 가열 속도의 영향)

  • Choi Woo-Hyuk;Kim Sung-Wook;Kim Jong-Hyun;Kim Gil-Young;Lee Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.52-58
    • /
    • 2005
  • This study was carried out to investigate the effect of bonding temperature and heating rate on transient liquid phase diffusion bonding of Ni-base superalloy. The heating rate was varied by $0.1^{\circ}C$/sec, $1^{\circ}C$/sec, $10^{\circ}C$/sec to the bonding temperatures $1100^{\circ}C,\;1150^{\circ}C,\;1200^{\circ}C$ under vacuum. As bonding temperature increased, maximum dissolution width of base metal increased, but a dissolution finishing time decreased. The eutectic width of insert metal in the bonded interlayer decreased linearly in proportion to the square root of holding time during isothermal solidification stage. The bonding temperature was raised, isothermal solidification rate slightly increased. As the heating rate decreased and the bonding temperature increased, the completion time of dissolution after reaching bonding temperature decreased. When the heating rate was very slow, the solidification proceeded before reaching bonding temperature and the time required for the completion of isothermal solidification became reduced.

High Temperature Tensile Strength and Fatigue Life Characteristics for Reduced Activation Ferritic Steel (JLF-1) by TIG Welding (TIG 용접한 저방사화 페라이트강 (JLF-1)의 고온강도 및 피로수명특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Kim, Sa-Woong;Kohyama, Akira
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1444-1450
    • /
    • 2003
  • The fatigue life and tensile strength of JLF-1 steel (Fe-9Cr-2W-V-Ta) and its TIG weldment were investigated at the room temperature and $400^{\circ}C$. Four kinds of test specimens, which associated with the rolling direction and the TIG welding direction were machined. The base metal of JLF-1 steel represented almost anisotropy in the tensile properties for the rolling direction. And the base metal of JLF-1 steel showed lower strength than that of TIG weldment. Also, the strength of all materials entirely decreased in accordance with elevating test temperature. Moreover, the fatigue limit of weld metal was largely increase than that of base metal at both temperatures. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The SEM fractography of tensile test specimen showed conspicuous cleavage fracture of a radial shape. In case of fatigue life test specimen, there were so many striations at crack initiation region, and dimple was observed at final fracture region as a ductile fracture mode.

Analysis of a Convective, Radiating Rectangular Fin (대류, 복사 사각 핀의 해석)

  • Kang, Hyung-Suk;Kim, Jong-Ug
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.29-34
    • /
    • 2006
  • A convective, radiating rectangular fin is analysed by using the one dimensional analytic method. Instead of constant fin base temperature, heat conduction from the inner wall to the fin base is considered as the fin base boundary condition. Radiation heat transfer is approximately linearized. For different fin tip length, temperature profile along the normalized fin position is shown. The fin tip length for 98% of the maximum heat loss with the variations of fin base length and radiation characteristic number is listed. The maximum heat loss is presented as a function of the fin base length, radiation characteristic number and Biot number.

  • PDF

Thermal radiation model for rocket plume base heating using the finite-volume method (유한체적법에 의한 로켓플룸 저부가열의 열복사 모델)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3598-3606
    • /
    • 1996
  • The finite volume method for radiation is applied to investigate a radiative heating of rocket base plane due to searchlight and plume emissions. Exhaust plume is assumed to absorb, emit and scatter the radiant energy isotropically as well as anisotropically, while the medium between plume boundary and base plane is cold and nonparticipating. Scattering phase function is modelled by a finite series of Legendre polynomials. After validating benchmark solution by comparison with that of previous works obtained by the Monte-Carlo method, further investigations have been done by changing such various parameters as plume cone angle, scattering albedo, scattering phase function, optical radius and nozzle exit temperature. The results show that the base plane is predominantly heated by the plume emission rather than the searchlight emission when the nozzle exit temperature is the same as that of plume.

Effect of Variable Base Glaze on the Gradation of Colouring and Analysis of The Computer D-Base (기본유의 변화가 안료의 발색에 미치는 영향과 Computer D-base해석)

  • 임희진;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.333-342
    • /
    • 1999
  • This research was performed to investigate how the basic glaze change affected colour development at high temperature with a stable colorant (spinel structure CoAl2O4 pigment) The compounded pigment which is widely used for porcelain was also tested for the basic glazes adaptability. The data from the test were recorded in a computer data-base program. Therefore could be easily used in the study related with a pottery field. CoO : Al2O3 system spinel pigment of barium glaze lime glaze zinc glaze lead glaze and talc glaze were chosen for this study. The colors of Cobalt blue bright blue, blue purple were seen at the wave lengths of 455-480nm at the firing temperature of 1250$^{\circ}C$. Stable color were obtained from lime glaze bar-ium glaze zinc glaze. All the information in the database were used to examine all the possible result of the test in the study of porcelain. When the test results database were examined in all temperature ranges the lack of adhesion with the pigment occurred at the temperature of 1150$^{\circ}C$. The lack of adhesion is seen due to vaporization of the lead glaze.

  • PDF