• Title/Summary/Keyword: Base load capacity

Search Result 204, Processing Time 0.026 seconds

End Bearing Behavior of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh Sung;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.197-203
    • /
    • 2008
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the rock mass conditions with fractures rather than the strength of intact rock. Therefore, a database which includes 13 load tests performed on cast-in-place concrete piles and soil investigation data at the field test sites was made first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. Pressuremeter modulus and limit pressure, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greater than 0.7 in most cases. In addition, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

Scheduling and Feedback Reduction in Coordinated Networks

  • Bang, Hans Jorgen;Orten, Pal
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.339-344
    • /
    • 2011
  • Base station coordination has received much attention as a means to reduce the inter-cell interference in cellular networks. However, this interference reducing ability comes at the expense of increased feedback, backhaul load and computational complexity. The degree of coordination is therefore limited in practice. In this paper, we explore the trade-off between capacity and feedback load in a cellular network with coordination clusters. Our main interest lies in a scenario with multiple fading users in each cell. The results indicate that a large fraction of the total gain can be achieved by a significant reduction in feedback. We also find an approximate expression for the distribution of the instantaneous signal to interference-plus-noise ratio (SINR) and propose a new effective scheduling algorithm.

Studies on the Development of Bearing Capacity Reinforcement for the Foundation of Soil (기초지반의 지지력보강공법에 관한 연구)

  • 유동환;최예환;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.38-49
    • /
    • 1988
  • This paper presented as follows results of laboratory model tests with various shaped footings on soil bed reinforced with the strips on the base of behaviour of soil structure according to the loads and triaxial test results reinforced with geotextiles. Their parameters studied were the effects on the bearing capacity of a footing of the first layer of reinforcement, horizontal and vertical spacing of layers, number of layers, tensile strength of reinforcement and iclination load to the vertical 1.Depending on the strip arrangement, ultimate bearing capacity values could be more improved than urreinforced soil and the failure of soil was that the soil structure was transfered from the macrospace to microspase and its arrangement, from edge to edge to face to face. 2.The reinforcement was produced the reinforcing effects due to controlling the value of factor of one and permeable reinforcement was never a barrier of drainage condition. 3.Strength ratio was decreased as a linear shape according to increment of saturation degree of soil used even though at the lower strength ratio, the value of M-factor was rot influenced on the strength ratio but impermeable reinforcement decreased the strength of bearing capacity. 4.Ultimate bearing capacity under the plane-strain condition was appeared a little larger than triaxial or the other theoretical formulars and the circular footing more effective. 5.The maximum reinforcing effects were obtained at U I B=o.5, B / B=3 and N=3, when over that limit only acting as a anchor, and same strength of fabric appeared larger reinforcing effects compared to the thinner one. 6.As the LDR increased, more and more BCR occurred and there was appeared a block action below Z / B=O.5, but over the value, decrement of BCR was shown linear relation, and no effects above one. 7.The coefficient of the inclination was shown of minimum at the three layers of fabrics, but the value of H / B related to the ultimate load was decreased as increment of inclination degree, even though over the value of 4.5 there wasn't expected to the reinforcing effects As a consequence of the effects on load inclination, the degree of inclination of 15 per cent was decreased the bearing capacity of 70 per cent but irnproved the effects of 45 per cent through the insertion of geotextile.

  • PDF

Design of Trapezoidal Air Screw for Elevators (엘리베이터용 사다리꼴 에어 스크류의 설계)

  • Park, Sang-Shin;Kim, Jin-Ho
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.14-20
    • /
    • 2008
  • In this paper, the characteristics of trapezoidal air screws is studied. These screws can e applied to the elevator having column driving shaft. The generalized coordinate transformation technique is used to solve incompressible Reynolds' equation because the air lubricated plane is twisted. The transformed equation is discretized by the base of Finite difference method. Using Visual C++ language, a GUI program which can calculate he load carrying capacity for this kind of air screw is developed, then the design variables for these air screws is studied.

A Revolute Robot Manipulator with a New Structure (새로운 구조의 다관절 로봇 매니퓰레이터)

  • Choi, Hyung-Sik;Kim, Young-Sik;Baek, Chang-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.539-546
    • /
    • 2004
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To overcome this, a new type of the robot actuator based on the four-bar-link mechanism driven by the ball screw was proposed and constructed. Also, a new type of a revolute-jointed robot manipulator composed of the developed actuators was developed. The base axis is actuated by the motor with the conventional speed reducer, but the other axes are actuated by the proposed actuators. The kinematics and dynamics of the robot were analyzed, and the performance test of the robot was made. Through the test results, the performance of superior load capacity versus the robot weight is shown.

Distributed Resource Partitioning Scheme for Intercell Interference in Multicellular Networks

  • Song, Jae-Su;Lee, Seung-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • In multicellular wireless networks, intercell interference limits system performance, especially cell edge user performance. One promising approach to solve this problem is the intercell interference coordination (ICIC) scheme. In this paper, we propose a new ICIC scheme based on a resource partitioning approach to enhance cell edge user performance in a wireless multicellular system. The most important feature of the proposed scheme is that the algorithm is performed at each base station in a distributed manner and therefore minimizes the required information exchange between neighboring base stations. The proposed scheme has benefits in a practical environment where the traffic load distribution is not uniform among base stations and the backhaul capacity between the base stations is limited.

A Study on the Behaviors of Column-to-Footing Connections for Concrete Filled Tube(CFT) System (콘크리트 충전 각형강관 주각부의 내력 및 변형에 관한 연구)

  • Kim, Cheol-Hwan;Kim, Seong-Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • The purpose of this paper is to investigate the behavior of concrete-filled tube columns for footing connections. Eight specimens were tested to investigate such structural behavior according to the column base type. The specimens consisted of concrete-filled steel tube columns (or bare steel tube columns), reinforced concrete footings, and base plates (or stud connectors). The specimens were subjected to lateral cyclic load. The cyclic load was applied according to a predetermined strength sequence. The results of the experiment indicated that the flexural strength of the stud-connector- type column base is higher than that of the base-plate-type column base. The structural behavior of the concrete-filled tube column base was similar to that of the bare steel column base.

Estimation of Pile Resistance Factor by CPT Based Pile Capacity (CPT결과를 이용한 항타말뚝 지지력 평가를 위한 저항계수 산정)

  • Kim Dae-Ho;Lee Jun-Hwan;Kim Bum-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.113-122
    • /
    • 2005
  • Application of Limit State Design in geotechnical engineering has become world-widely popular. While LRFD code in the North America presents geotechnical load and resistance factors, the values of resistance factors proposed by these methods are still unstable with limited application. CPT has been widely used for the pile design and various methods have been proposed to estimate the bearing capacity of piles. In this paper, resistance factors for representative pile design methods based on CPT results are evaluated. Field pile load test and CPT results were collected and analyzed in order to obtain necessary statistical data and resistance factors. Resistance factors of the base, shaft, and total capacity are estimated. From fisrt order second moment (FOSM) analysis, resistance factors of $0.30{\sim}0.55$ are estimated for total load capacity.

Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS) (공학적인 지열시스템(EGS)을 이용한 지열발전 기술)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF

Investigation of the effect of damper location and slip load calculation on the behavior of a RC structure

  • Mehmet Sevik;Taha Yasin Altiok;Ali Demir
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.365-375
    • /
    • 2023
  • Energy dissipation systems increase the energy dissipation capacity of buildings considerably. In this study, the effect of dampers on a typical 10-storey reinforced concrete structure with a ductile moment-resisting frame was investigated. In this context, 5 different models were created according to the calculation of the slip load and the positions of the dampers in the structure. Nonlinear time-history analyzes using 11 different earthquake acceleration records were performed on the models using the ETABS program. As a result of the analyses, storey displacements, energy dissipation ratios, drift ratios, storey accelerations, storey shears, and hysteretic curves of the dampers on the first and last storey and overturning moments are presented. In the study, it was determined that friction dampers increased the energy dissipation capacities of all models. In addition, it has been determined that positioning the dampers in the outer region of the structures and taking the base shear as a basis in the slip load calculation will be more effective.