• Title/Summary/Keyword: Base load capacity

Search Result 204, Processing Time 0.028 seconds

Rate Control Based Call Admission Control Scheme for CDMA2000 System (CDMA2000시스템에서 전송률 제어에 기반한 호 수락제어 기법)

  • Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9B
    • /
    • pp.771-777
    • /
    • 2004
  • In a COMA system, the capacity is variable and mainly depends on multiple access interference. The multiple access interference has a deep relationship with transmitted or received power. The capacity of COMA2000 system is considered to be limited by the forward link capacity. In this paper, we show that the forward link cell load can be represented by the total transmitted power of base station and we propose a forward link call admission control (CAC) strategy for COMA2000 system. The proposed call admission scheme adopts the rate control algorithm for data call. This call admission scheme enables the system to utilize radio resource dynamically by controlling data rate according to the cell load status, and enhance the system throughput and grade of service (GoS). quality of service(QoS) such as blocking and outage probability.

A Study on the Bearing Capacitiy behavior of Large-diameter Drilled Shafts According to Various Ground Conditions under Pile Tip through Numerical Analysis Results (수치해석 결과 분석을 통한 다양한 말뚝 선단하부의 지반조건에 따른 대구경현장타설말뚝의 지지력 거동에 관한 연구)

  • Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.7-22
    • /
    • 2021
  • In this study, inverse analysis was performed on the bi-directional axial compressive load test conducted on drilled shafts. And the bearing capacities were analyzed by numerical analysis of various pile tip ground conditions of silt clay, silt sand, sand silt, sand gravel, weathered rock, and soft rock. The bearing capacities were analyzed using the P-S method, the Davisson method, and the allowable sttlement of 25.4 mm. The minimum allowable bearing capacities analyzed by three methods were found to be 19.64 MN ~ 24.96 MN. At this time, the base resistances were sharing a 2% ~ 12% of a head load, shaft resistance were shared 88% ~ 98% of the head load. The greater the strength of pile tip was found to increase the allowable bearing capacity. However, the difference between the maximum allowable bearing capacity and the minimum allowable bearing capacity was 5.32 MN, and the increase in the allowable bearing capacity was only 27% depending on the pile tip.

An experimental study on different socket base connections under cyclic loading

  • Pul, Selim;Husem, Metin;Arslan, Mehmet Emin;Hamzacebi, Sertac
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.377-387
    • /
    • 2014
  • This paper presents an experimental study on socket base connections of precast reinforced concrete columns. The main purpose of this study is to determine socket base connection which has the closest behavior to monolithic casted column-base joints. For this purpose, six specimens having different column-socket base connection details were tested under cyclic loading. For each test, strength, stiffness, ductility and drift ratios of the specimens were determined. Test results indicated that a suggested connection type is 10%-30% stronger than the other type of connections under lateral loading. The welded connection (PC-5) had better lateral load carrying capacity and ductility. On the other hand, performance of standard connection (PC-1) which is commonly used in construction was weaker than other connections. Thus, decision of connection type should be referred not only performance but also applicability.

Model Test of O-Cell Pile Load Test with Variable End Plate (가변선단재하판을 이용한 양방향말뚝재하시험의 모형실험)

  • Joo, Yong-Sun;Kim, Nak-Kyung;Kim, Sung-Kyu;Kim, Ung-Jin;Park, Jong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.476-481
    • /
    • 2009
  • Bi-directional load test is one of O-cell tests. The O-cell test is a system which may be used for performing static load tests on cast in situ reinforced concrete bored piles. The technique was devised and developed by Osterberg of Northwestern University(USA) and has been in use around the world. The principle of the method is that an O-cell is installed in a cast in situ bored pile base. Once the pile concrete reaches its design strength the cell is connected to an hydraulic pump and pressured. Pressurization causes the cell to expand, developing an upward force on the section of pile above the cell loads, pile movements and strains within the pile then enable the capacity of the pile and its load settlement curves to be ascertained. The O-cell pile load test with variable end plate is operated on second steps - the first step is to confirming end bearing capacity with variable end plate and the second step is similar to the conventional O-cell test. In the study, To calculate ultimate capacity of bi-directional load test using model with the pile with variable end plate O-cell.

  • PDF

The Behavior of In-situ Top Base foundation in Granular Soil (사질토에서 현장타설 팽이기초의 거동특성)

  • Kim, Hak-Moon;Kim, Chan-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.121-129
    • /
    • 2008
  • Numerical analysis for the in-situ top base foundation (In-situ TBF) was carried out in order to investigate the effect of bearing capacity and the load delivering mechanisms in granular soil. The input data for the numerical model was prepared from the result obtained from the plate load test and full size in-situ TBF field tests. According to the result of numerical analysis, the behavior of in-situ TBF showed that bearing capacity of the foundation increased by $50{\sim}100%$ and settlement was reduced up to $1/2{\sim}1/3$ comparing to other types foundation. The effect of cone-shaped part of the in-situ TBF was as important as pile part for the improvement of foundation stability. The variation of the length of pile part indicated that the present length was proved satisfactory in terms of effectiveness.

Bearing capacity of shallow footing under combined loading

  • Kusakabe, Osamu;Takeyama, Tomohide
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.3-25
    • /
    • 2010
  • The paper deals with two bearing capacity problems of shallow footing under combined loading. The first is a FEM study of shallow strip footing on two-layer clay deposits subjected to a vertical, horizontal and moment combined loading, while the second is a centrifuge study of shallow rectangular footing on dry sand under double eccentricity. The FEM results revealed that the existence of top soft layer sensitively affects more on horizontal and moment capacity than vertical capacity for cases of footing on soft clay overlying stiff clay. Practical design charts are presented to evaluate bearing capacities of footing for various combinations of the ratio of the depth of the upper layer to the footing width and the ratio of undrained strength of the upper layer to that of the lower. The centrifuge tests indicated that current design practice of calculating failure load of rectangular surface footing under double eccentricity underestimates the centrifuge loading test data. This trend is more marked when the eccentricity becomes larger. The decreasing trend in failure load with an increase of double eccentricity is rather uniquely expressed by a single curve, using a newly defined resultant eccentricity and the diagonal length of the footing base.

  • PDF

Behavior of Floating Top-Base Foundation on Soft Soils by Laboratory Model Tests (실내모형실험을 통한 연약지반에서 부양형 팽이기초의 거동)

  • Chung, Jin-Hyuck;Chung, Hye-Kwun;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.5-15
    • /
    • 2011
  • This research performed the laboratory model tests for Top-Base Foundation developed in Japan and Floating Top-Base Foundation developed in Korea on the typical clayey soft soils, namely, clay, clayey silt and clayey sand. The performances of the two types of top-base foundation were compared with each other and evaluated by measuring load-settlement, heaving of foundation side, ground stress distribution in this model tests. The change of settlement caused by the increase of top base width was also analyzed. As a result of the model tests, Floating Top-Base Foundation showed better performance in bearing capacity improvement, settlement decrease, stress dispersion effect and lateral confinement force. And settlement caused by the increase of top base width converged to a regular value from $5{\times}5$ layout of the width.

Characteristics of Uplift Capacity of a Embedded Foundation and Soil Type (매입기초와 토질에 따른 인발저항력 특성)

  • Lim, SeongYoon;Kim, YuYoung;Yu, SeokChul;Kim, MyeongHwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.23-30
    • /
    • 2019
  • In this study, we evaluated the applicability of proper embedded depth of fillings by examining the uplift resistance using spiral foundation and top base foundation. As a result of the model test, the maximum uplift resistance increased with the embedded depth. The maximum uplift resistance of each region was found to be 50cm depth. The spiral foundation was 335.14N of Sancheong, 312.32N of Seongju, 403.94N of Wanju, and the top base foundation was 745.06N of Sancheong, 1028.82N of Seongju and 950.76N of Wanju. The yield point after the elastic section in the stress-displacement graph of the top base foundation was calculated as the maximum uplift resistance. For this reason, farmers do not actually use top bases foundation. Therefore, it was considered that the additional load increase due to slip connector will not occur. Model test results show that the maximum uplift resistance increases with the purlinss installed under the ground. Therefore, additional comparative studies through purlins installation will be needed.

Estimation of Bearing Capacity for Open-ended Pile in Sands Considering Soil Plugging (II) - Applicability of New Design Equation - (사질토지반에서 폐색효과를 고려한 개단말뚝의 지지력 산정 (II) - 새로운 지지력 산정식의 적용성 -)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.199-206
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the incremental filling ratio, IFR. However, most design criteria for open-ended piles do not consider the variation of pile bearing capacity with IFR. In this study, new design equations for calculating the pile base and shaft load capacities, based on IFR value of the pile, were proposed using the results of model pile tests. A full-scale pile load test was also conducted on fully instrumented open-ended pile driven into gravelly sand. The IFR for the pile was continuously measured during pile driving. In order to check the accuracy of predictions made with the proposed equations, the equations were applied to two examples, including the pile load test preformed in this study. Based on the comparisons with the pile load tests results, the proposed equations appear to produce satisfactory predictions.

An Experimental Study on the Static Load Capacity of T-Type Tension Joints with High Tension Bolt (고장력볼트 T-인장이음의 정적내력에 관한 실험적 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok;Kim, Kyong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • The tension type joint is a mechanically very efficient connection method, as it directly uses the load capacity of base metal or high tension bolt, the reduction of the number of drilling hole and fastening and the fatigue resistance. It is applied to the joint of girder and cross beam, horizontal joints of towers, beam to column joints, the secondary member joints of deck floor ends, and brackets. In this paper, static load tests for the T-type tension joint were conducted to investigate the structural behavior of the joint. The parameters were bolt diameter, flange thickness, and the reduction of clamping force of the joint. The failure modes and load capacity of joints and the effects of flange thickness, bolt diameter and clamping force were investigated.