• Title/Summary/Keyword: Base foam

Search Result 30, Processing Time 0.03 seconds

Combustion Characteristics of Premixed Combustor using Nickel Based Metal Foam (니켈합금 Metal Foam을 적용한 예혼합 버너의 연소특성)

  • Lee, Pil Hyong;Hwang, Sang Soon;Kim, Jong Kwang
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.42-49
    • /
    • 2017
  • A premixed combustion has many advantages including low NOx and CO emission, high thermal efficiency and a small volume of combustor. This study focused on combustion characteristics in a premixed combustion burner using the nickel based metal foam. The results show that the blue flame is found to be very stable at heating load 6,300-25,200 kcal/h by implementing the proper nickel based metal foam and baffle plate. The premixed flame mode is changed into green flame, red flame, blue flame and lift off flame with decreasing equivalence ratio. NOx emission was measured 80 ppm(0% oxygen base) from 0.710 to 0.810 of equivalence ratio and CO emission is 90 ppm(0% oxygen base) under the same equivalence ratio. It is also found that the stable blue flame region in flame stability curve becomes wider with increasing the heat load.

Fabrication and Properties of Alloy Foam Materials using Metal Powders (금속 분말을 이용한 합금폼 제조 및 특성)

  • Choi, James;Kim, Ku-Hwan
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.489-493
    • /
    • 2010
  • Nickel-based and iron-based alloys have been developed and commercialized for a wide range of high performance applications at severely corrosive and high temperature environment. This alloy foam has an outstanding performance which is predestinated for diesel particulate filters, heat exchangers, and catalyst support, noise absorbers, battery, fuel cell, and flame distributers in burners in chemical and automotive industry. Production of alloy foam starts from high-tech coating technology and heat treatment of transient liquid-phase sintering in the high temperature. These technology allow for preparation of a wide variety of foam compositions such as Ni, Cr, Al, Fe on various pore size of pure nickel foam or iron foam in order for tailoring material properties to a specific application.

Study on Biodegradable Polyurethane Foam for Non-lethal Weapon (비 살상 무기 개발을 위한 생분해성 발포 폴리우레탄에 대한 연구)

  • Lee, Hyang Moo;Kim, Young Hyun;Kim, Kyung Won;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • Foam-type biodegradable polyurethane adhesives were developed as a non-lethal weapon against illegal fishing boats. The adhesives were prepared from a hardener of polymeric methylene diphenyl diisocyanate (MDI) and a base composed of polyester and/or polyether polyols. In order to accelerate biodegradability, starch, dextrin, and amylase were added into the base, and which present about 34% degradability within 4 weeks confirmed by OECD 301C method. For proper mixing and corresponding prompt foam reaction, viscosities of hardener and base compositions were investigated in the temperature ranges from 0 to $50^{\circ}C$. For fast completion of the foam forming and corresponding adhesion, rising time was recorded in the same temperature range, and the rising time of the adhesive was varied within around 1 minute. T-peel adhesion tests with cotton fabrics were performed which showed 20.78 N/cm and 11.95 N/cm as the maximum and the average values, respectively.

Application of Polyurethane Foam Loaded with a Schiff Base Ligand for Determination of Trace Amounts of Copper in Water Samples by Flame Atomic Absorption Spectroscopy

  • Moftakhar, Mahdieh Koorehpazan;Yaftian, Mohammad Reza;Nahaei, Samaneh;Zamani, Abbas Ali
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.3
    • /
    • pp.283-288
    • /
    • 2014
  • A column solid phase extraction procedure based on modified polyurethane foam (PUF) by a newly synthesized Schiff base ionophore, named 2,2'-{iminobis[propane-3,1-diylnitrilo(1E)prop-1-yl-1-ylidene]}diphenol, was developed for preconcentration step of trace amounts determination of copper ions in water samples by atomic absorption flame spectroscopy. The influence of parameters on the adsorption process such as sample pH, amount of modified PUF packed in the column, type and volume of stripping reagent and its flow rate were investigated and optimized. Under optimum experimental conditions, the calibration graph was linear in a relatively wide range ($0.005-210{\mu}g/ml$) with a limit of detection $0.002{\mu}g/ml$ of copper. The proposed method allows achieving to a concentration factor of >133. The capacity of a column (1.6 cm i.d.) packed by 6 g of PUF modified by 12 mg of the Schiff base was found to be $247.7({\pm}2.1){\mu}g$ of copper. It was found that the adsorption process was highly selective towards copper ions with respect to some associated metal ions. The presented procedure was successfully applied for determination of copper in some water samples.

Processing and Mechanical Properties of Ni-Cr and Ni-Cr-Al Foams by Pack-Cementation

  • Dunand, David;Choe, Hui-Man
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.19.1-19.1
    • /
    • 2009
  • Open-cell Ni-Cr and Ni-Cr-Al(with gamma/gamma prime microstructure typical of Bi-base super alloys) foams are manufactured by pack-cementation at $1000{\boxplus}$degrees C, followed by homogenization at $1200{\boxplus}C$. The resulting alloyed foams retain the low relative densities (less than 3.5 wt.%). The oxidation behavior of Ni-Cr foams turns out to be identical to that of bulk Ni-Cr alloys, after taking into account the foam's higher surface area. The room-temperature compressive behavior of the Ni-Cr and Ni-Cr-Al is compared to model predictions. Additionally, the foam creep behavior, measured between 680 and $825{\boxplus}C$ in the stress range of 0.1-0.3 MPa, compared to two analytical models, namely strut compression and strut bending as high-temperature deformation modes.

  • PDF

Heat Transfer in Metallic Foam Subjected to Constant Heat Flux

  • Jin, Meihua;Kim, Pil-Hwan;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1372-1377
    • /
    • 2008
  • Since metallic foam will increase the performance of heat exchanger, it have caused many researcher's attention recently. Our research base on the model that metallic foams applied to heat exchanger. In this case, there is three kind of heat transfer mechanisms, heat conduction in fibers, heat transfer by conduction in fluid phase, and internal heat change between solid and fluid phases. In this paper, we first discuss the acceptance of applying thermal equilibrium among the two phases. then to calculate the dimensionless temperature profile along 7 metallic foams. The 7 samples have different characteristics, such as area ratio, effective conductivity, porosity, etc.

  • PDF

Material Nonlinear Behavior and Microstructural Transition of Porous Polyurethane Foam under Uniaxial Compressive Loads (일축 압축하중 하 다공성 폴리우레탄폼의 재료비선형 거동 및 미세구조 변화)

  • Lee, Eun Sun;Goh, Tae Sik;Lee, Chi-Seung
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.688-694
    • /
    • 2017
  • Porous materials such as polymeric foam are widely adopted in engineering and biomedical fields. Porous materials often exhibit complex nonlinear behaviors and are sensitive to material and environmental factors including cell size and shape, amount of porosity, and temperature, which are influenced by the type of base materials, reinforcements, method of fabrication, etc. Hence, the material characteristics of porous materials such as compressive stress-strain behavior and void volume fraction according to aforementioned factors should be precisely identified. In this study, unconfined uniaxial compressive test for two types of closed-cell structure polyurethane foam, namely, 0.16 and $0.32g/cm^3$ of densities were carried out. In addition, the void volume fraction of three different domains, namely, center, surface and buckling regions under various compressive strains (10 %, 30 %, 50 % and 70 %) were quantitatively observed using Micro 3D Computed Tomography(micro-CT) scanning system. Based on the experimental results, the relationship between compressive strain and void volume fraction with respect to cell size, density and boundary condition were investigated.

Investigation of design values computation of wood shear walls constructed with structural foam sheathing

  • Shadravan, Shideh;Ramseyer, Chris C.
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.223-238
    • /
    • 2019
  • This study investigated the ultimate lateral load capacity of shear walls constructed with several types of structural foam sheathing. Sixteen tests were conducted and the results were compared to the published design values commutated by the manufactures for each test series. The sheathing products included 12.7 mm (1/2 in) SI-Strong, 25.4 mm (1 in) SI-Strong, 12.7 mm (1/2 in) R-Max Thermasheath, and 2 mm (0.078 in) ThermoPly Green. The structural foam sheathing was attached per the manufacturers' specification to one side of the wood frame for each wall tested. Standard 12.7 mm (1/2 in) gypsum wallboard was screwed to the opposite side of the frame. Simpson HDQ8 tie-down anchors were screwed to the terminal studs at each end of the wall and anchored to the base of the testing apparatus. Both monotonic and cyclic testing following ASTM E564 and ASTM E2126, respectively, were considered. Results from the monotonic tests showed an 11 to 27 percent smaller capacity when compared to the published design values. Likewise, the test results from the cyclic tests showed a 24 to 45 percent smaller capacity than the published design values and did not meet the seismic performance design criteria computation.

Foaming Characteristics and Physical Properties of Ethylene Vinyl Acetate Copolymer Foams (Ethylene Vinyl Acetate Copolymer 발포체의 발포특성 및 물리적 특성)

  • Kim, Jin-Tae;Son, Woo-Jung;Ahn, Byung-Hyun;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.52-60
    • /
    • 2001
  • Physical properties of foams depend on the density of foams, Physical properties of base polymers, open ceil contents, and cell structures including the size, size distribution, shape of ceil and the thickness of membrane and strut. The density of foam is affected by raw materials, concentration oi crosslinking agent and blowing agent and process parameters such as processing technique and condition. Ethylene vinyl acetate copolymer(EVA) foam is a crosslinked cellular material. The foaming characteristics and physical properties of EVA foam are affected by decomposition rate of blowing agent. In this study, the decomposition rate of blowing agent and crosslinking rate, foaming characteristics and physical properties of foams were evaluated. The slow decomposition rate of blowing agent results in low density foam, good shock absorption property and uniform cell size distribution compared to the high decomposition rate of blowing agent.

  • PDF

Fabrication and Characterization of Porous TCP coated Al2O3 Scaffold by Polymeric Sponge Method

  • Sarkar, Swapan Kumar;Kim, Young-Hee;Kim, Min-Sung;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.579-583
    • /
    • 2008
  • A porous $Al_2O_3$, scaffold coated with tricalcium phosphate(TCP) was fabricated by replica method using polyurethane(PU) foam as a fugitive material. Successive coatings of $Al_2O_3$ and hydroxyapatite(HAp) were applied via dip coating onto polyurethane foam, which has a slender and well interconnected network. A porous structure was obtained after sequentially burning out the foam and then sintering at $1500^{\circ}C$. The HAp phase was changed to TCP phase at high temperature. The scaffold showed excellent interconnected porosity with pore sizes ranging from $300{\sim}700{\mu}m$ in diameter. The inherent well interconnected structural feature of PU foam remained intact in the fabricated porous scaffold, where the PU foam material was entirely replaced by $Al_2O_3$ and TCP through a consecutive layering process. Thickness of the $Al_2O_3$ base and the TCP coating was about $7{\sim}10{\mu}m$ each. The TCP coating was homogeneously dispersed on the surface of the $Al_2O_3$ scaffold.