• Title/Summary/Keyword: Base current

Search Result 1,505, Processing Time 0.036 seconds

Effect of Buried Contact on the Epitaxial Base Silicon Solar Cell (에피텍셜 베이스 실리콘 태양전지에서 Buried Contact 효과)

  • Chang, Gee-Keun;Lim, Yong-Keu;Jeong, Jin-Cheol
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.313-316
    • /
    • 2003
  • The new epitaxial base cell as a high efficiency Si solar cell was fabricated and the effect of buried contact on the cell characteristics was investigated. In our experiments, the cell with buried contact showed the open circuit voltage of 0.62 V, the short circuit current of 40 mA, the fill factor of 0.7, and the efficiency of 10% under the incident light of AM-1 100 ㎽/$\textrm{cm}^2$. The insertion of buried contact in the epitaxial base structure brought the fabricated cell to the efficiency improvement of about 33%. The cell proposed in this paper has the structural superiority in the fabrication of high efficiency solar cell due to the carrier drift transport in the optical absorption region and the formation of back surface field by $p^{-}$ $p^{+}$ epitaxial base, and the reduction of emitter series resistance by n+ buried contact.

Seismic base isolation of precast wall system using high damping rubber bearing

  • Tiong, Patrick L.Y.;Adnan, Azlan;Rahman, Ahmad B.A.;Mirasa, Abdul K.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1141-1169
    • /
    • 2014
  • This study is aimed to investigate the seismic performance of low-rise precast wall system with base isolation. Three types of High Damping Rubber Bearing (HDRB) were designed to provide effective isolation period of 2.5 s for three different kinds of structure in terms of vertical loading. The real size HDRB was manufactured and tested to obtain the characteristic stiffness as well as damping ratio. In the vertical stiffness test, it was revealed that the HDRB was not an ideal selection to be used in isolating lightweight structure. Time history analysis using 33 real earthquake records classified with respective peak ground acceleration-to-velocity (a/v) ratio was performed for the remaining two types of HDRB with relatively higher vertical loading. HDRB was observed to show significant reduction in terms of base shear and floor acceleration demand in ground excitations having a/v ratio above $0.5g/ms^{-1}$, very much lower than the current classification of $0.8g/ms^{-1}$. In addition, this study also revealed that increasing the damping ratio of base isolation system did not guarantee better seismic performance particularly in isolation of lightweight structure or when the ground excitation was having lower a/v ratio.

Seismic control of concrete rectangular tanks subjected to bi-directional excitation using base isolation, considering fluid-structure-soil interaction

  • Mohammad Hossein Aghashiri;Shamsedin Hashemi;Mohammad Reza Kianoush
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.25-52
    • /
    • 2024
  • In the current paper, the various responses of concrete rectangular liquid storage containers under seismic load, each isolated by a lead-rubber bearing subjected to bi-directional earthquake forces are investigated. A parametric study is conducted to investigate the effects of isolation period, yield strength of the isolator and the effects of soil-foundation interaction for non-isolated and base-isolated tanks located on different soil types. In most cases, the value of base shear, base moment, wall displacement and hydrodynamic pressure is reduced by the effect of the isolators whose effective frequency is within the appropriate range. The sloshing displacement is amplified due to seismic isolation of the tanks for both tall and shallow tank configurations. Also, it is found that the seismic isolation technique is more efficient for the more flexible tank. Studying various soil types indicates that, unlike the responses of non-isolated tanks which change drastically for different soil types, the responses of base-isolated structures are less affected. Finally, it is observed that the variation in structural responses is not only related to the superstructure configuration and bearings properties but also depends on the earthquake specifications.

The Study on the Corrosion Characteristics of Cr Plating in Marine Environment (해양환경 중에서 Cr도금의 부식 특성에 관한 연구)

  • 임우조;곽남인;윤병두
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.211-217
    • /
    • 2003
  • Recently, with rapid development in marine and shipbuilding industries such as marine structures, ships and chemical plants for ship, there occurs much interest in the study on corrosion characteristics played an important role in mechanical design. This paper was studies on the corrosion characteristics of chromium plating in the marine environment. Under the various specific resistance, the electrochemical polarization test of chromium plating was carried out. And thus corrosion potential, polarization resistance, corrosion current density, control efficiency of corrosion and polarization control behavior of chromium plating are investigated. The main results are as the followed : 1. The polarization resistance of Cr plating and Ni become higher than that of base metal, also and these material become low with decrease of the specific resistance. 2. As the specific resistance decreases, the corrosion current density of Cr and Ni plating is lower than that of base metal. 3. The corrosion reaction of Cr plating, Ni plating and base metal vs. specific resistance is cathodic control.

Effect of the Heat Input on the Tensile Properties in Arc Brazing of Ferritic Stainless Steel using Cu-Si Insert Alloy (Cu-Si계 삽입금속을 사용한 페라이트계 스테인리스강의 아크 브레이징에서 인장성질에 미치는 입열량의 영향)

  • Kim, Myung-Bok;Kim, Sang-Ju;Lee, Bong-Keun;Yuan, Xin Jian;Yoon, Byoung-Hyun;Woo, In-Su;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.289-296
    • /
    • 2010
  • The effects of heat input and different microstructureswere investigated on the tensile-shear properties of an arc-brazed joint of theferritic stainless steel 429EM using a Cu-Si insert alloy. The brazing speed was fixed at 800 mm/min whilethe brazing current varied from 80 to 120A. For abrazing current lower than 100A, fracturing occurred at the joint root in the direction perpendicular to the tensile load. As the brazing current increased to 120A, fracturing occurred at the base metal or the joint root. The joint and the base metal had very similar yield and tensile load values. However, the amount of elongation was decreased considerably compared to when the base metal was used. The fracturing began at the triple point of the root part and was classified into three types. The difference in the tensile-shear properties was closely related to the three fracture types.

Nonlinear response of r.c. framed buildings retrofitted by different base-isolation systems under horizontal and vertical components of near-fault earthquakes

  • Mazza, Fabio;Mazza, Mirko;Vulcano, Alfonso
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.135-144
    • /
    • 2017
  • Near-fault ground motions are characterized by high values of the ratio between the peak of vertical and horizontal ground accelerations, which can significantly affect the nonlinear response of a base-isolated structure. To check the effectiveness of different base-isolation systems for retrofitting a r.c. framed structure located in a near-fault area, a numerical investigation is carried out analyzing the nonlinear dynamic response of the fixed-base and isolated structures. For this purpose, a six-storey r.c. framed building is supposed to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by current Italian code in a high-risk seismic zone. In particular, elastomeric (e.g., high-damping-laminated-rubber bearings, HDLRBs) and friction (e.g., steel-PTFE sliding bearings, SBs, or friction pendulum bearings, FPBs) isolators are considered, with reference to three cases of base isolation: HDLRBs acting alone (i.e., EBI structures); in-parallel combination of HDLRBs and SBs (i.e., EFBI structures); FPBs acting alone (i.e., FPBI structures). Different values of the stiffness ratio, defined as the ratio between the vertical and horizontal stiffnesses of the HDLRBs, sliding ratio, defined as the global sliding force divided by the maximum sliding force of the SBs, and in-plan distribution of friction coefficient for the FPs are investigated. The EBI, EFBI and FPBI base-isolation systems are designed assuming the same values of the fundamental vibration period and equivalent viscous damping ratio. The nonlinear dynamic analysis is carried out with reference to near-fault earthquakes, selected and scaled on the design hypotheses adopted for the test structures.

Development of Implicit Memory: The Effect of Knowledge Base and Meta Memory (암묵적 기억의 발달: 지식기반과 메타기억의 영향)

  • Jang, Se-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.639-651
    • /
    • 2015
  • The purpose of this study is to examine the effects of knowledge base and metamemory in children's conceptual implicit memory with category-exemplar-generation task. Subjects were total 180 children of each 60 from Grade2, Grade6 and High school students. They were examined implicit memory with category-exemplar-generation task, knowledge base test, and metamemory test. The data were analyzed using ANCOVA, and Scheffe post hoc test. The result was following: First, as the child grow old, implicit memory primed increased. Implicit memory amount was significantly different between Grade2 and High school students, Grade6 and High school students. Second, as the child grow high knowledge base, implicit memory primed increased. There was a significantly different found between age and knowledge base. Third, as the child grow high metamemory, implicit memory primed increased. These results were interpreted as that the state of the age, knowledge base and metamemory should be an important factorin implicit memory. And current findings suggest that implicit memory can show development if a children's knowledge base and metamemory in developing with age.

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.

The New Challenges for the Republic of Korea Navy and the Development of Maritime Task Flotilla's Force Development (한국해군의 새로운 도전과 기동전단의 발전 방향)

  • Kim, Duk-ki
    • Strategy21
    • /
    • s.39
    • /
    • pp.163-197
    • /
    • 2016
  • The completion of Jeju Naval Base on February 2016 made the Republic of Korea Navy(ROKN) review the size and role of the Maritime Task Flotilla(MTF). The new strategic environment for the 12st century and the new challenges require the Navy to counter North Korea's provocations and prevent potential enemy's threat. The Navy is also required to take part in the variety of international roles and missions commensurated with Korea's global status to maximize the national interest. Despite these changes, Korea's military construction concept is still unable to break away from the old paradigm of the North Korean threat largely centered. In order to develop the current MTF into the Task Group with the construction of Jeju Naval Base, the Navy must newly not only establish new force development plan and fleet management concepts but also go to persuade and convince policy decision makers. To this end, the following efforts should be promoted. First, the ROK Navy steps up efforts in order to share with the Task Group's vision and strategy. The Navy should also provide the size and structure as well as the missions and roles of the Task Group to react to new maritime security environment. Second, the Navy analyse the MTF's ability and what is required and necessary to perform its duty. After that, it must set out the direction of the Task Group's force development. Third, the current missions and roles of the MTF should be re-established to respond various threats. Finally, accommodating of new technology to the MTF should intensify its strengths. The ROK Navy has a mixed force structure consisting of three fixed- base fleets and a MTF. The fixed base fleet has a passive force to defend and protect its own sea areas, but the MTF should actively not only counter North Korea's threats, including ballistic missiles, but also fight potential threats and takes international missions as a primary task force. However, the MTF has a limited capability to accomplish given missions and long-range operations, and thus, the ROK Navy is strongly required to construct the Task Group.

4H-SiC Curvature VDMOSFET with 3.3kV Breakdown Voltage (3.3kV 항복 전압을 갖는 4H-SiC Curvature VDMOSFET)

  • Kim, Tae-Hong;Jeong, Chung-Bu;Goh, Jin-Young;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.916-921
    • /
    • 2018
  • In this paper, we analyzed the power MOSFET devices for high voltage and high current operation. 4H-SiC was used instead of Si to improve the static characteristics of the device. Since 4H-SiC has a high critical electric field due to wide band gap, 4H-SiC is more advantageous than Si in high voltage and high current operation. In the conventional VDMOSFET structure using 4H-SiC, the breakdown voltage is limited due to the electric field crowding at the edge of the p-base region. Therefore, in this paper, we propose a Curvature VDMOSFET structure that improves the breakdown voltage and the static characteristics by reducing the electric field crowding by giving curvature to the edge of the p-base region. The static characteristics of conventional VDMOSFET and curvature VDMOSFET are compared and analyzed through TCAD simulation. The Curvature VDMOSFET has a breakdown voltage of 68.6% higher than that of the conventional structure without increasing on-resistance.