Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
v.29
no.5
/
pp.272-281
/
2003
Nontraditional or alternative medicine is becoming an increasingly attractive approach for the treatment of various inflammatory disorders and cancers. Curcumin is the major constitute of turmoric powder extracted from the rhizomes of the plant Curcuma longa. Resveratrol is a phytoalexin present in grapes and a variety of medicinal plants. In this report, We investigated the effect of curcumin and resveratrol on regulatory protein of cell cycle, induction of apoptosis and MMP activity. Treatment with 75 M curcumin for 24 hrs produced morphological changing in HN-4 cells. Curcumin and resveratrol inhibited the cellular growth in HN-4 cells. Inhibition of cell growth was associated with down-regulation of cell cycle regulatory proteins. Curcumin-induced caspase-3 activation and Bax degradation were dose-dependent with a maximal effect at a concentration of 100 M. The elevated caspase-3 activity in curcumin treated HN-4 cells are correlated with down-regulation of survivin and cIAP1, but not cIAP2. Curcumin induced a dose-dependent increase of cytochrome c in the cytosol. Curcumin induced-apoptosis was mediated through the release of cytochrome c. In addition, curcumin-induced apoptosis was caused by the generation of reactive oxygen species, which was prevented by antioxidant N-acetyl-cysteine (NAC). Cotreatment with NAC markedly prevented cytochrome c release, Bax cleavage and cell death. Also resveratrol-induced apoptosis was preceded by down-regulation of the anti-apoptotic Bcl-2, cIAP1, and caspase-3 activity. However, resveratrol-induced apoptosis was not prevented by antioxidant NAC. In addition, HN-4 cells release basal levels of MMP2 when cultured in serum-free medium. Treatment of the cells with various concentrations of PMA for 24 hr induced the expression and secretion of latent MMP9 as determined by gelatin zymography. HN-4 cells were treated with various concentrations of curcumin and resveratrol in the presence of 75 nM PMA, and MMP2 and 9 activities were inhibited by curcumin and resveratrol. These findings have implications for developing curcumin-based anticancer and anti-inflammation therapies.
In this study, to retain a stable bacterial inoculant, Bacillus strains showing antifungal activity were screened. The improved production, antifungal mechanism, and stability of the antifungal metabolite by a selected strain, AF4, a potent antagonist against phytopathogenic Botrytis cinerea, were also investigated. The AF4 strain was isolated from rhizospheric soil of hot pepper and identified as Bacillus subtilis by phenotypic characters and 16S rRNA gene analysis. Strain AF4 did not produce antifungal activity in the absence of a nitrogen source and produced antifungal activity at a broad range of temperatures (25-40℃) and pH (7-10). Optimal carbon and nitrogen sources for the production of antifungal activity were glycerol and casein, respectively. Under improved conditions, the maximum antifungal activity was 140±3 AU/ml, which was higher than in the basal medium. Photomicrographs of strain AF4-treated B. cinerea showed morphological abnormalities of fungal mycelia, demonstrating the role of the antifungal metabolite. The B. subtilis AF4 culture exhibited broad antifungal activity against several phytopathogenic fungi. The antifungal activity was heat-, pH-, solvent-, and protease-stable, indicating its nonproteinous nature. These results suggest that B. subtilis AF4 is a potential candidate for the control of phytopathogenic fungi-derived plant diseases.
In order to develop the enzymatic hydrolysis system concerned with taste and flavor, strains having the high hydrolyzing activity on the soy protein were selected from some traditional Mejus. Two molds and one bacterium producing enzymes which were different in character of hydrolysis were isolated and identified. Leucine and azodye enzyme activities of both M4 and M5 were relatively high among in the isolated molds. And, leucine enzyme activity of B16 was the lowest in the isolated bacteria. These strains were isolated as microorganisms having a dissimilar hydrolysis pattern on the soy protein by enzymatic reactions. Mold M4 on the culture solid media was mycelium colors of white and its sclerotia colors were changed from white to black. According to the result of slide culture, radial conidial head, subclavate vesicle, conidia of subglobose, stipes of uncolored with smooth walls and metula and phialides were existed. Because M4 was taxonomically similar to the characteristics of Aspergillus oryzae (ahlburg) species, M4 was identified and named as Aspergillus oryzae M4.Mold M5 showed white and black mycelium on the MEA medium. Mold M5 colony exhibited grayish-green color and have long(7 mm) sporangiophores at slide culture. Sporangia became brownish-gray and the wall of larger sporangia was broken to form small collars, and smaller sporangia were fomed continually from large basal membrane. Columella is globose and hyaline, and sporangiospores are ellipsoidal of small diameter$(80\;{\mu}m)$. Because M5 was taxonomically similar to the Mucor circinelloides of zygomycetes, M5 was was identified and named as Mucor circinelloides M5. Bacteria B16 colony was opaque white, circular and lobate, and had rod shaped endospore. B16 was found positive in stain, catalase, ${\beta}-glucosidse$ and V-P tests. B16 was found to utilize D-fructose, ${\alpha}-D-glucose$, maltose, D-mannose, D-raffinose, stachyose and sucrose. By the morphological and physiological results, the characteristics of B16 was thought to correspond to that of Bacillus megaterium. However, fatty acid composition was similar to Paenibacillus marcerans, requiring further study for the definite identification. Accordingly, Bacteria B16 was provisionally classified and named as Bacillus megaterium B16.
Burkholderia sp. D5, a polyaromatic hydrocarbons(PAHs)-degrading bacterium, was isolated from oil-contaminated soil. The bacterium could utilize phenanthrene (Phe) as a sole carbon source but could not use pyrene (Pyr). However, the strain could degrade Pyr when a cosubstrate such as yeast extract (YE) was supplemented. The PAH degradation rate of the bacterium was enhanced by the addition of other organic materials such as YE, peptone and glucose. YE was a particularly effective additive in stimulating cell growth as well as PAH degradation. When 1 g-YE/L was supplemented into the basal salt medium (BSM) with 215 mg-Phe/L, the specific growth rate (0.28 h-1) and Phe-degrading rate (29.30 μmol/L/h) were enhanced approximately ten and two times more than those obtained in the BSM with 215 mg-Phe/L, respectively. Through kinetic analysis, the maximum specific growth rate (μmax) and PAH degrading rate (Vmax) for Phe were obtained as 0.34/h and 289 ${\mu}mol$/L/h, respectively. Also, μmax and Vmax for Pyr were 0.27 h-1 and 50 ${\mu}mol$/L/h, respectively. The degradation rates for each Phe (2.20 μmol/L/h) and Pyr (2.18 μmol/L/h) were lower in mixture substrates than in a single substrate (29.30 ${\mu}mol$/L/h and 9.58 ${\mu}mol$/L/h, respectively). Burkholderia sp. D5 can degrade Phe and Pyr contained in soil, and the PAH degradation rates in soil were 20.03 ${\mu}mol$/L/h for Phe and 1.09 ${\mu}mol$/L/h for Pyr.
Growth of Campanula punctata 'Rubriflora' plantlets, as affected by three levels of photosynthetic photon flux (PPF), 70, 110, and $220{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, two levels of $CO_2$ concentration, 500 and $1,500{\mu}mol{\cdot}m^{-1}$, and two levels of number of air exchanges per hour (NAEH), 0.1 and $2.8 h^{-l}$, was studied. Explants were obtained from photomixotrophically-micropropagated plantlets. Four explants were planted in each $3.7{\times}10^{-4}m^3$ polycarbonate box containing MS basal medium and no added sucrose. Explants were cultured under cool-white fluorescent lamps for $16h{\cdot}d^{-1},\;at\;25\pm1^{\circ}C$ temperature, and $70\~80\%$ relative humidity In treatments of $2.8h^{-1}$ NAEH, a 10mm round hole made on the vessel cap was sealed with a microporous filter. For higher $CO_2$ concentrations in the culture room, $CO_2$ gas was provided from a tank of liquefied $CO_2$. Fresh and dry weights, length of the longest root, and number of leaves significantly increased with increasing PPF and especially $CO_2$ concentration. Length of the longest root, number of leaves, fresh and dry weights, and chlorophyll concentration were enhanced with increased NAEH. However, leaf area was the smallest in the $220{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}\;PPF\;2.8h^{-1}$ NAEH and especially, $1,500{\mu}mol{\cdot}mol^{-1}\;CO_2$ concentration treatment. Treatment effect became more produced with time. Overall, treatment with $220{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}\;PPF\;and\;1,500{\mu}mol{\cdot}mol^{-1}\;CO_2$ gave the most vigorous growth.
Journal of the Korean Society of Food Science and Nutrition
/
v.24
no.3
/
pp.470-486
/
1995
Mammary epithelial cells contain a subpopulation of cells with a large proliferativ potential which are responsible for the maintenance of glandular cellularity and are the progenitor cells of mammary cancer. These clonogens give rise to multicellular clonal alveolar or ductal units(AU or DU) on transplantation and hormonal stimulation. To isolate putative mammary clonogens, enzymatically monodispersed rat mammary epithelial cells from organoid cultures and from intact glands are sorted by flow cytometry according to their affinity for FITC labeled peanut lectin(PNA) and PE labeled anti-Thy-1.1 antibody(Thy-1.1) into four subpopulations : cells negative to both PNA and Thy-1.1(B-), PNA+cells, Thy-1.1+cells, and cells positive to both reagents(B+). The in vivo transplantation assays indicate that the clonogenic fractions of PNA+cells from out-growths of organoids in primary cultures for three days in complete hormone medium(CHM) are significantly higher than those of cells from other subpopulations derived from cultrues or from intact glands. Extracellular matrix(ECM) is a complex of several proteins that regulated cell function ; its role in cell growth and differentiation and tissue-specific gene expression. It can act as a positive as well as a negative regulator of cellular differentiation depending on the cell type and the genes studied. Regulation by ECM is closely interrelated with the action of other regulators of cellular function, such as growth factors and hormones. Matrigel supports the growth and development of several different multicellular colonies from mammary organoids and from monodispersed epithelial cells in culture. Several types of colonies are observed including stellate colonies, duct-like structures, two- and three-dimensional web structures, squamous organoids, and lobulo-duct colonies. Organoids have the greatest proliferative potential and formation of multi-cellular structures. Phase contrast micrographs demonstrate extensive intracellular lipid accumulation within the web structures and some of duct-like colonies. At the immunocytochemical and electron micrograph level, casein proteins are predominantly localized near the apical surface of the cells or in the lumen of duct-like or lobulo-duct colonies. Squamous colonies are comprised of several layers of squamous epithelium surrounding keratin pearls as is typical fo squamous metaplasia(SM). All-trans retinoic acid(RA) inhibits the growth of SM. The frequency of lobulo-ductal colony formation increased with the augmentation of RA concentration in these culture conditions. The current study models could provide powerful tools not only for understanding cell growth and differentiation of epithelial cells, but also for the isolation and characterization of mammary clonogenic stem cells.
This study was carried out to investigate the optimal condition for multiple propagation through leaf tissue culture and to apply anther culture techniques to Pulsatilla koreana Nakai breeding. Leaf and anther of Pulsatilla koreana Nakai were cultured on MS, MT, LS and $B_5$ media supplemented with several growth regulators and nitrogen sources under various conditions. For callus induction and differentiation from the Pulsatilla koreana leaf segments were more effective in the combination of zeatin and auxin than auxin alone. The color of the callus was green when treated with IBA alone. Shoot differentiation was more effective when treated with zeatin than auxin alone, especially the best hormoal combination for shoot differentiation was zeatin 1.0mg/l +NAA 0.1mg/l, while 2,4-D inhibited shoot differentiation. The appeared rate of S pollen was 35% in vivo, while that of S pollen by low temperature$(4^{\circ}C)$ pretreatment for 4 days was increased by 53% and the optimum culture time for callus induction from anther was uni-nucleate stage. $B_5$ basal medium supplemented with NAA 0.5mg/l and zeatin 1 mg/l was the most effective on callus formation and the best results of plant regeneration were obtained from combination of NAA 0.5mg/l and zeatin 0.5mg/l in anther culture. $NH_{4}NO_3$ as more effectives as the nitrogen source than $KNO_3$ and the combination with zeatin 2.0mg /L was the best effective. The best combination for plant regeneration in callus induced from anther was $NH_{4}NO_3$ 1650mg/l + $KNO_3$ 3800mg/l + zeatin 2.0mg/l. Ploidy level of anther-derived plants appeared 28% haploid, 47% diploid and the others were triploid, tetraploid and mixploid. In compare with E.S.T, M.D.H and P.X banding patterns were distinguished among callus, haploid and diploid plants in electrophoresis.
Fifty-five local collections of buck wheat, Fagopyrum esculentum, were investigated their ratios of long-styled (LS) and short-styled (SS) flowers, fertility, meiosis of megaspore and microspore mother cell, female and male gametogenesis, and egg apparatus in accordance with the sowing seasons (spring, summer), altitudes (20m, 50-100m, 300m), and parent style types (L, S). Also they were embryologically investigated the fertility, fertilizing phenomenon and proembryogenesis by the legitimate and illegitimate pollination. There were no differences in the ratios of long-styled and short-5tyled flowers along with altitudes, but more irregularness was observed in plain area than that in the mountaineous or coastal area. LS versus SS ratios by sowing seasons were significantly separated into 1 : 1 in the summer sowing (P 0.1), but they were irregularly separated in the spring sowing. The segregating ratios by parent style types showed more number of short-styled flower in the spring sowing, and were statistically seperated into 1 : 1 in the summer sowing (P 0.25), regardless to parent style types. In the artificial legitimate union, the seed setting rates of the summer sowing (59-61%) were much higher than those of the spring sowing (about 30%), but in the artificial illegitimate union the seed setting rates were only fructified about 0.8-1.8% in the spring sowing. The seed setting rates in accordance with flowering stages were larger in turn early, middle, late, in the summer sowing. The grain number and grain weight per plant of short-styled flower were more than those of long-styled one regardless to style types. The 1,000 grain weight of long-styled flower was heavier than that of short-styled one in large grain, but it was lighter than that of short-styled flower in small or medium grain. The percentage of normal female and male gametogenesis in the summer sowing were higher than those in the spring sowing. The ovule was atropous and two polar nuclei were a synkarion before flowering. The pollens germinated at 30 minuts after pollination and the pollen tube grew continually and penetrated into micropyle at 1.5-2 hours and the two male nuclei fertilized with egg nucleus at 3 -5 hours after pollination. Flertilizing times in summer were shorter than in autumn. The fertilized egg was divided in a small apical cell toward the interior of the embryo sac and a large basal cell toward the micropyle cell at 15-24 hours after pollination, and division times in summer were shorter than in autumn. The proembryo began the embryogenesis at 7-8 days and formed itself into the perfect embryo at 15 days after pollination.
In order to determine the antigenic localization in the tissues of the adult Metagonimus yokegawai, immunogoldlabeling method was applied using serum immunoglobulins (IgG) of cats which were infected with isolated metacercariae from Plecoglossus altivelis. The sectioned worm tissue was embedded in Lowicryl HM 20 medium and stained with infected serum IgG and protein A gold complex (particle size: 12 nm) , It was observed by electron microscopy at each tissue of the worm. The gold particles were observed on the tegumental syncytium as well as cytoplasm of tegumental cells and epithelial lamella of the caecum. The gold particles were not observed on the basal lamina of the tegument, interstitial matrix of the parenchyma, the muscle tissue and mitochondria of the tegument. The gold particles were specifically labeled in the secretory granules in the vitelline cells. They were also labeled on the lumen of bladder and egg shell. The above findings showed that antigenic materials in the tissue of adult worms were specifically concentrated on the tegumental syncytium as well as cytoplasm of tegumental cells and epithelial lamella of the caecum.
Kim, Yun-Hye;Park, Hyun-Myung;Jung, Ji-Yong;Kwon, Tack-Min;Jeung, Soon-Jae;Yi, Young-Byung;Kim, Gyung-Tae;Nam, Jae-Sung
Horticultural Science & Technology
/
v.28
no.3
/
pp.449-455
/
2010
'Moulinrouge' was selected as the best regenerating cultivar among 18 different spray-type chrysanthemum cultivars bred in the Gyeongnam Flowers Breeding Research Institute. When the leaf explants from standard- and spray-type chrysanthemum 'Jinba' and 'Moulinrouge' were incubated on MS basal medium supplemented with $0.5mg{\cdot}L^{-1}$ BA and $1.0mg{\cdot}L^{-1}$ NAA, both 'Jinba' and 'Moulinrouge' induced adventitious shoots that can be regenerated into plantlets. Based on these regeneration conditions, we developed an efficient $Agrobacterium$-mediated chrysanthemum 'Moulinrouge' transformation method by using sequential selection of shoots from low ($10mg{\cdot}L^{-1}$) to high ($30mg{\cdot}L^{-1}$) concentrations of kanamycin after co-cultivation of leaf explants with $Agrobacterium$ for 10 days and induction of shoots. All kanamycin resistant plants investigated with genomic PCR analysis carried the report gene, $AtSICKLE$, in their genome. Although expression levels of the report gene in the transgenic plants investigated with RT-PCR were relatively low because of inefficiency of CaMV 35S promoter in chrysanthemum, transgenic lines expressing $AtSICKLE$ efficiently showed leaf epinasty phenotype. We expect that our results will provide a useful method that can perform a high-throughput investigation of genes isolated and studied well in model plants for molecular breeding of chrysanthemum.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.