• 제목/요약/키워드: Barrier coat

검색결과 53건 처리시간 0.029초

플라즈마 용사 열차폐 코팅의 열화에 따른 접착강도 평가 (Evaluation of Bond Strength of Isothermally Aged Plasma Sprayed Thermal Barrier Coating)

  • 김대진;이동훈;구재민;송성진;석창성;김문영
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.569-575
    • /
    • 2008
  • In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.

Lifetime Performance of EB-PVD Thermal Barrier Coatings with Coating Thickness in Cyclic Thermal Exposure

  • Lu, Zhe;Lee, Seoung Soo;Lee, Je-Hyun;Jung, Yeon-Gil
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.571-576
    • /
    • 2015
  • The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and $500{\mu}m$, and those of the bond coat were 100 and $250{\mu}m$. FTF tests were performed until 1140 cycles at a surface temperature of $1100^{\circ}C$ for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and $500{\mu}m$ were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.

경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가 (Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness)

  • 이승수;김준성;정연길
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.248-255
    • /
    • 2020
  • 경사화 두께를 갖는 열차폐 코팅의 열적 내구성과 열적 안정성에 대한 코팅층 두께의 영향을 화염 열피로 시험과 열충격 시험을 통해서 조사하였다. Bond 층과 top 층은 각각 Ni-Cr계 상용 MCrAlY 분말과 상용 이트리아 안정화 지르코니아 (YSZ) 분말을 사용하여 니켈기지의 초내열합금 모재 (GTD-111)에 대기 플라즈마 용사법 (APS)으로 코팅층을 형성하였다. 1100 ℃의 화염으로 1429회 열피로 시험 후 bond 층이 일부 산화되고 top 층과 bond 층 계면에서 열화에 의한 산화층 (TGO)이 관찰되었으나, 코팅층 부위와 관계없이 균열이나 박리현상 없는 양호한 미세구조를 나타내었다. 1100 ℃ 열충격 시험결과, 37회 열충격 테스트 후 코팅층의 얇은 부위에서 박리가 시작되어 98회 시험 후 코팅층의 50% 이상이 박리되었으며, 코팅층의 두께가 얇게 형성된 부위는 코팅층이 두껍게 형성된 부위에 비해, top 층의 박리와 함께 bond 층의 산화가 많이 진행되었으며, 코팅층 두께가 상대적으로 두껍게 형성된 부위에서 열차폐 효과의 증가로 인해 bond 층의 내산화성과 열적 안정성이 우수한 것으로 나타났다.

고온에서 알루미나 박막의 인장특성 (Tensile characteristics of Alumina Thin Film at High Temperature)

  • 선신규;강기주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1344-1347
    • /
    • 2004
  • Recently, Study on measuring property of a micro thin film(nm ~ hundreds of ) under Thermal Mechanical loading. In this work, We perform tensile test at high temperature(1200 ) to investigate mechanical properties of alumina TGO formed under Thermal Barrier Coating. We used Digital Image Correlation method for measuring displacement, and We presented a method of tensile test for thin film at high temperature.

  • PDF

전자 빔 물리적 증착(EB-PVD)법으로 코팅된 YSZ 열차폐층의 압흔손상 거동에 대한 하부층의 영향 (Influence of Subsurface Layer on the Indentation Damage Behavior of YSZ Thermal Barrier Coating Layers Deposited by Electron Beam Physical Vapor Deposition)

  • 허용석;박상현;한인섭;우상국;정연길;백운규;이기성
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.549-555
    • /
    • 2008
  • The thermal barrier coating must withstand erosion when subjected to flowing gas and should also maintain good stability and mechanical properties while it must also protect the turbine component from high temperature, hot corrosion, creep, and oxidation during operation. In this study we investigated the influence of subsurface layer, $Al_2O_3$ or NiCrCoAIY bond coat layer, on the indentation damage behavior of YSZ thermal barrier coating layers deposited by electron beam physical vapor deposition (EB-PVD). The bond coat is deposited using different process such as air plasma spray (APS) or spray of high velocity oxygen fuel (HVOF) and the thickness is varied. Hertzian indentation technique is used to induce micro damages on the coated layer. The stress-strain behaviors are characterized by results of the indentation tests.

Thermal Behavior Variations in Coating Thickness Using Pulse Phase Thermography

  • Ranjit, Shrestha;Chung, Yoonjae;Kim, Wontae
    • 비파괴검사학회지
    • /
    • 제36권4호
    • /
    • pp.259-265
    • /
    • 2016
  • This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was ussed to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.

Thermally Grown Oxide의 고온 크리프에 따른 열차폐 코팅의 잔류응력 분포에 관한 유한요소해석 (Numerical Simulation for Residual Stress Distributions of Thermal Barrier Coatings by High Temperature Creep in Thermally Grown Oxide)

  • 장중철;최성철
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.479-485
    • /
    • 2006
  • The residual stress changes on thermo-mechanical loading in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloys using a Finite Element Method (FEM). It was found that the residual stress of the interface boundary was dependent upon mainly the oxide formation and the swelling rate of the oxide by creep relaxation. During an oxide swelling, the relaxation of residual stress which is due to creep deformation increased the TBC's life. In the case of the fine grain size of TGO scale, the TBC stresses piled up by oxide swelling could be relaxed by diffusional creep effect of TGO.

Urechis unicinctus 수정막과 첨체반응에 대한 미세구조적 관찰 (Fine Structural Investigations of Fertilization Envelopes and Acrosomal Reaction in Urechis unicinctus)

  • 권혁제;신길상;김완종
    • Applied Microscopy
    • /
    • 제30권1호
    • /
    • pp.61-72
    • /
    • 2000
  • U. unicinctus 난자를 대상으로 인공수정 후 수정막 형성에 따른 물질적 기원과 첨체반응 등에 관련된 구조변화에 대하여 광학현미경과 전자현미경을 이용하여 관찰하였다. 관찰결과에 의하면 1차 수정막의 물질은 과잉의 정자에 대한 효과적 방어 기능을 보유한 난외막 표층 기원의 물질이었으며, 2차 수정막은 피질과립의 분비에 의하여 형성되었다. 3차 수정막은 광학현미경하에서 특이한 구조의 관찰은 없었으나 전자현미경에 의한 관찰시 많은 입자상 물질들로 구성되었으며, 수정 후 60분에는 이들 입자물질의 응집에 의해서 수정막은 경과되는 것으로 관찰되었다. 1차 수정막과 난외막 표층의 유사성 그리고 1차 수정막의 형성과 미세융모의 퇴화가 동시적인 사건이라는 것은 미세융모가 U. unicinctus에서 정자의 수용체로 작용할 수 있는 것으로 추정할 수 있었다. 첨체소관에 의한 난세포막 침투시 침체 단부에서 과립상의 물질이 표층(surface coat)에 확산되었다. 첨체소관은 첨체의 기부에서 시작되고, 첨체간격을 통하여 신장되었다.

  • PDF

세라믹 코팅 고에너지 제동 디스크의 트라이볼로지적 특성 (Tribological Characteristics of Ceramic Coated High Power Brake Discs)

  • 이희성;강부병
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.305-311
    • /
    • 2002
  • Three different kinds of brake discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. A braking test bench was specially designed to analyse thermo-mechanical and frictional behaviors of two types of brake with different sizes in stop and hold braking modes. Plasma spray coating technique was also used to coat the discs with ceramic powder. During the test four commercial brake pads were coupled with discs. Ceramic coated discs showed good stability in friction coefficient at high speed and high energy braking conditions. But they caused large wear loss of pad mass compared with the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. For a steel disc. it showed fluctuating friction coefficient at high speed but small wear loss of pad mass compared with ceramic coated discs.