• Title/Summary/Keyword: Barley production system

Search Result 70, Processing Time 0.04 seconds

Cropping Systems for Vegetable Peanut and Environmental Effect of Residue Incorporation in Soil (풋땅콩 작부체계와 수확 후 잔존 유기물의 친환경적 효과)

  • 김정태;배석복;박향미;윤을수;김민태;최진용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.452-459
    • /
    • 2003
  • A new demand for vegetable peanut (Arachis hypogaea L.) in Korea has increased farmers interest in growing vegetable peanut. Compared to grain peanut production, vegetable peanut production enables the growth period to be shortened by 20 or 30 days and farmers to adopt various cropping systems and to return crop residues in the soil. With the purpose of establishing desirable cropping systems for sustainable vegetable peanut production, three field experiments were conducted from 2000 to 2001 at Milyang, the southeastern part of Korea. Main focuses were given into the effect of cropping systems for vegetable peanut production on each crop's yield and soil sustainability. The cropping systems investigated were single vegetable peanut, peanut-radish-green barley, peanut-barley, and peanut-garlic cropping system, with or without crop residue incorporation in the soil. Among the cropping systems investigated for sustainable vegetable peanut production, peanut-only and peanut-radish-green barley cropping systems showed vulnerable to diseases and lodging while peanut-barley and peanut-garlic cropping systems showed higher stability in response to diseases and lodging, consequently leading to higher yield potential of vegetable peanut production. In the peanut-barley cropping system, both barley and peanut residues returned to the soil played an important role in soil improvement as well as in significantly increased grain yield of peanut and barley. A particular notice was taken to the pronounced increase in Trichoderma population and the amount of nitrogen mineralization induced by the returned barley residue. Soil structure, compactness, pH, and fertility were positively influenced by the returned crop residues, which apparently increased sustainability in vegetable peanut production systems.

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Barely (Hordeum vulgare L.) Production System (보리의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Ryu, Jong-Hee;Shim, Kyo-Moon;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.722-727
    • /
    • 2010
  • This study was conducted to estimate the carbon footprint and to establish the database of the LCI (Life Cycle Inventory) for barely cultivation system. Barley production system was separated into the naked barley, the hulled barley and the two-rowed barley according to type of barley species. Based on collecting the data for operating LCI, it was shown that input of fertilizer was the highest value of 9.52E-01 kg $kg^{-1}$ for two-rowed braley. For LCI analysis focussed on the greenhouse gas (GHG), it was observed that carbon footprint were 1.25E+00 kg $CO_2$-eq. $kg^{-1}$ naked braley, 1.09E+00 kg $CO_2$-eq. $kg^{-1}$ hulled braley and 1.71E+00 $CO_2$-eq. $kg^{-1}$ two-rowed barley; especially two-rowed barley cultivation system had highest emission value as 1.09E+00 kg $CO_2$ $kg^{-1}$ barley. It might be due to emit from mainly fertilizer production for barley cultivation. Also $N_2O$ was emitted at 7.55E-04 kg $N_2O\;kg^{-1}$ barley as highest value from hulled barley cultivation system because of high N fertilizer input. The result of life cycle impcat assessment (LCIA), it was observed that most of carbon emission from barely cultivation system was mainly attributed to fertilizer production and cropping unit. Characterization value of GWP was 1.25E+00 (naked barley), 1.09E+00 (hulled barley) and 1.71E+00 (two-rowed barely) kg $CO_2$-eq. $kg^{-1}$, respectively.

Effects of Post-Harvest Bulk Management System Using Rice Processing Complex on Labor Saving and Quality of Barley (보리 산물처리에 의한 품질변화와 생력효과)

  • 이춘우;윤의병;구본철;백성범;손영구;서세정;남중현;김완석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.475-478
    • /
    • 2002
  • Post-harvest treatment for barley production requires many steps including drying, cleaning, and packing, and these steps be needed many labor input. Rice processing complex (RPC) is useful for post harvest management system in rice production. However, it is rare to be used for barley production. This study was conducted to explore the variations of quality and labor saving between conventional method and bulk-management system in post-harvest using RPC. The sorting rate was not different between manual method and bulk management. The hardness of non-polished grain was ranged 10,175-10,329 g/$3.14mm^2$, and that for non-polished grain was higher than that for polished grain, but there was not different between drying method. There was not be showed the hunter's value such as L, a and b according to drying method. Cooking characters such as water absorption ratio, swelling ratio, and water soluble extracts by circulated or continued dryer was higher than manual drying using solar heat. Labor input per ha for each cultivation process in bulk-management of barley using rice processing complex was 21 hours, compared to 46 hr/ha in the conventional method, labor input was greatly saved by up to 54.3% in the post-harvest bulk management system.

Studies on the Forage Production and Utilization on Paddy Field in Korea (한국에 있어서 답리작을 이용한 양질 조사료 생산기술)

  • Seo, Sung;Yook, W.B.
    • Proceedings of the Korean Society of Grassland Science Conference
    • /
    • 2002.09b
    • /
    • pp.5-56
    • /
    • 2002
  • The problems in the current domestic forage production were evaluated, and the prospective improvement was suggested in this paper. Grassland development in forest, production of high quality forages in upland and paddy land, efficient utilization of rice straw, development of new varieties of forages suitable for our environmental conditions and imported forages were described Among them, preferential production and utilization of forages using paddy field after rice harvest . should be enlarged for domestic supply of forages in Korea. Several studies were carried out to select the promising forage crops and barley cultivars for whole crop silage production, to determine productivity, nutritive value and production cost of forages produced in paddy field, and feeding effect of forages with Hanuwoo and milking cow for whole crop silage with forages produced in paddy field, 1999 to 2001, and also discussed restraint factors and activation plans for enlargement of forage production in paddy land. The promising forage crops in paddy field were rye and barley for Middle region, and rye, barley, early maturing Italian ryegrass and wheat for Southern region. The promising barley cultivars for whole crop silage in paddy field were Albori in Suwon, Keunalbori, Milyang 92, Saessalbori, and Naehanssalbori in Iksan, and Keunalbori, Albori, Naehanssalbori, and Saegangbori in Milyang, respectively. Silage production, quality and animal palatability of silage by trench and round bale were also compared. The production yields of whole crop barley silage(WBS) were 17,135kg as a fresh matter, and 6,011kg as a dry matter per ha, and the quality of WBS was 2∼3 grade, while that of rice straw silage was 4 grade as a farm basis. The production cost of WBS per kg was 83won as a fresh matter, and 238won as a dry matter. Feeding of WBS as forages on Hanwoo was very desirable for the improvement of live-weight gain, beef quality and farm income, particularly in growing stage of Hanwoo. Milk production and income were also increased, and feed cost was decreased by feeding of WBS. The daily voluntary intake of WBS in milking cow was 26.3kg as a fresh matter(DM 7.7kg) per head. Milk production when WBS was fed, was very similar to that of imported hay feeding such as Kentucky bluegrass or domestic corn silage. The issues to be solved in near future f3r stable forage production and supply in paddy land are sustainable livestock-forages policy, development & seed production of new varieties of barley, rye, Italian ryegrass and other promising forages, efficient demand & supply system of forages, solidification for mass production and utilization of forages, efficient application management of animal slurry on paddy field considering environmental agriculture/livestock industry, and break k development of bottleneck technique in production field. Domestic production & supply of high cost agricultural machine (round baler, wrapper, handler and so on), plastic wrapping film, and silage additives are also important.

  • PDF

Evaluation of CO2 Balance in the Barley-Red Pepper and Barley-Soybean Cropping System (보리-고추와 보리-콩 작부체계에서 이산화탄소수지 평가)

  • Kim, Gun-Yeob;Suh, Sang-Uk;Ko, Byung-Gu;Jeong, Hyun-Cheol;Roh, Kee-An;Shim, Kyo-Moon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.408-414
    • /
    • 2008
  • Importance of climate change and its impact on agriculture and environment has increased with the rise Green House Gases (GHGs) concentration in the atmosphere. To slow down the speed of climate change many efforts have been applied in industrial sectors to reduce GHGs emission and to enhance carbon storage. In agricultural sector, many researches have been performed on GHGs emission reduction, but few on the role of carbon sink. In this study, we investigated carbon balance and soil carbon storage in agricultural field in the barley-red pepper and barley-soybean cropping system. With the system for automatic measuring of carbon dioxide, net ecosystem production(NEP) was estimated to be $6.3ton\;CO_2\;ha-1$ for N-P-K chemical fertilizer treatment plot and $10.6ton\;CO_2\;ha^{-1}$ for N-P-K chemical fertilizer with swine manure treatment plot in the barley-soybean rotation cropping. In the barley-red pepper rotation cropping, it was $12.0ton\;CO_2\;ha^{-1}$ for N-P-K chemical fertilizer treatment plot and $13.2ton\;CO_2\;ha^{-1}$ for N-P-K chemical fertilizer with swine manure treatment plot. Soil carbon storage rate was estimated to be $0.7ton\;C\;ha^{-1}$ for the barley-soybean cropping system and $0.5ton\;C\;ha^{-1}$ for barley-pepper cropping system. In appeared that agricultural lands may contribute to the greenhouse effect as a potential carbon sink preserving carbon into soil.

Effect of Cut on Forage Production and Grain Yield of Naked Barley Cultivars (예취가 쌀보리 품종의 청초생산과 종실수량에 미치는 영향)

  • 강영길;강형식
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.4
    • /
    • pp.294-299
    • /
    • 1991
  • Eight naked barley cultivars were grown in three production systems to select proper cultivars for dual production of forage and grain and to determine production system x cultivar interactions. In the forage systems. barley was seeded on September 27 and October 17, harvested for forage on November 1. December 10 and February 12 from the September 27 planting (forage system I) and on December 10 and February 12 from the October 17 seeding(forage system II). In the grain-only system, barley was planted on November 5. In forage system I, oven-dried forage yields of eight cultivars ranged 195 to 296kg/10a and Saessalbori and Naehanssalbori yielded significantly higher than the other cultivars recording 280 and 296kg/ l0a, respectively. In forage system II, oven-dried forage yields of eight cultivars ranged 106 to 143kg/10a showing no significant difference among cultivars. Production system x cultivar interactions were significant for lodging at maturity, powdery mildew rating, 1000 kernel weight and grain yield. Leaf area index and biomass at heading, no. of spikes per $m^2$, no. of kernels per spike and test weight were not affected by the production system. Forage utilization delayed heading by 3 days and reduced culm length, spike length, lodging due to heavy rain on May 5 and lodging at maturity except for Songhagbori and Naehanssalbori. Forage utilization did not significantly affect grain yield from the September 27 planting but reduced 9% from the October 17 planting. while Saessalbori and Hyangcheonggwa 1 yielded significantly less than in the grain-only system. Songhagbori appears to be a proper cultivar for dual production of forage and grain in Cheju, considering forage and grain yields. and lodging and powdery mildew resistance.

  • PDF

Barley Haploid Production Using Interspecific Crosses between Hordeum vulgare and H. bulbosum (야생종 H. bulbosum을 이용한 보리 반수체 육성)

  • Kim, B.Y.;Johnson, Duane L.;Kim, D.U.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.4
    • /
    • pp.392-399
    • /
    • 1988
  • The experiments were conducted to establish the effective barley haploid production system using interspecific crosses. Three spring barley cultivars. Bruce. Klages and Rodeo were used for this experiment. 1, 687 florets of three barley cultivars were crossed with bulbosum pollens. 1, 079 seeds were harvested and obtained 834 embryos so that seed set rate and embryo production rate were 64% and 77%, respectively. IAA effect was superior to NAA for root development and 1 ppm concentration of IAA gave the best result among five concentrations; 0ppm, 1ppm., 5ppm, 10ppm and 30ppm.

  • PDF

Cost Analysis of Wrap Silage Production in the Paddy Field for Forage Crop Cropping System (답리작 사료작물의 랩사일리지 생산비 분석)

  • Ha, Yu-Shin;Park, Kyung-Kyoo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.1
    • /
    • pp.75-84
    • /
    • 2012
  • Mechanized operation model and mechanical cultivation technology for winter barley, rye, Italian ryegrass and sudan grass wrap silage production system at the paddy field for cropping system was developed. Also, a series of experiment were performed and lots of data were collected and analyzed to develope mechanical technology, coverage area, and optimum size of the farm (break-even point) for wrap silage production system. The coverage area for winter barley or rye wrap-silage production system is determined around 61.9, 73.4, 77.5, 88.2 ha in the case of drill seeding and different ripening species by tractor power 50, 75, 100, 130 ps, respectably. The break-even point of the farming size is analyzed as 20 ha and its production cost is estimated around 367, 383, 430, 443 won/TDN-kg in the case of winter barley wrap-silage by tractor power 50, 75, 100, 130 ps, respectably. The break-even point of the farming size is analyzed as coverage area and its production cost is estimated around 237, 215 won/TDN-kg in the case of winter barley wrap silage and sudan grass by the tractor power 50, 100 ps, respectably.

Application of Molybdenum Enhances Nitrogen Fixation and Transfer, and Biomass Production under a Hairy Vetch/Barley Mixture Cropping System (풋거름 보리-헤어리베치 혼파 작부체계에서 몰리브덴 시용이 질소 고정, 이동 및 수량에 미치는 영향)

  • Kim, Tae-Young;Kim, Song-Yeob;Yoon, Young Eun;Kim, Jang Hwan;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.291-295
    • /
    • 2019
  • BACKGROUND: Mixed cropping of hairy vetch and Barley is widely used as a green manure for reducing chemical fertilizers while maintaining soil fertility in paddy soil. We investigated the effect of Molybdenum (Mo) fertilizer on vetch N2 fixation, biomass production and transfer N from vetch to barley under a hairy vetch-barley mixed cropping system. METHODS AND RESULTS: The barley and hairy vetch were sowed at a rate of 135 and 23 kg/ha, respectively, without chemical fertilizer application but with Mo fertilizer at 0, 0.5, 1.0, 2.0, and 4.0 kg/ha as a treatment. The percentage of hairy vetch N derived from air N2 fixation (%Ndfa) and N transfer from hairy vetch to barley (%Ndfv) was determined by the 15N natural abundance method. Although application of Mo at 2.0 kg/ha significantly increased biomass of both barley and hairy vetch, the biomass was decreased at application of Mo 4.0 kg/ha. At the application of Mo 2.0 kg/ha, the percentage of Ndfa and Ndfv was 81.7 and 53.9, respectively, which are significantly higher than that of the treatments without Mo. CONCLUSION: These results highlight that application of Mo fertilizer can be an effective measures to improve N fixation in hairy vetch and biomass production in both barley and hairy vetch.

Environmental Impacts on Concentrate Feed Supply Systems for Japanese Domestic Livestock Industry as Evaluated by a Life-cycle Assessment Method

  • Kaku, K.;Ogino, A.;Ikeguchi, A.;Osada, T.;Shimada, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1022-1028
    • /
    • 2005
  • The objectives of this study were to evaluate and compare the environmental load of two different concentrate feed supply systems to the Japanese domestic livestock industry using the Life-cycle Assessment (LCA) method. The current system was defined as that requiring 11.469 million tons of corn imported from the US by sea transport and supplied as concentrate feed to the Japanese domestic livestock industry. The new system proposed by Kaku et al. in 2004 was defined as where 802,830 tons of US imported corn would not be planted in US and would be replaced by barley planted in 278 thousand ha of Japanese domestic land left fallow for the past year. In this case, 909,000 tons of domestic harvest barley would have been supplied as concentrate feed to the Japanese domestic livestock industry in 2000. The activities taken into account within the two system boundaries were three stages: concentrate feed production, feed transportation and gas emission from the soil by chemical fertilizer. Finished compost was regarded as organic fertilizer and was put instead of chemical fertilizers within the system boundary. Adoption of this new concentrate feed supply system by the Japanese domestic livestock industry could reduce 78,462 tons $CO_2$-equivalents of global warming potential, 347 tons $SO_2$-equivalents of acidification potential, 54 tons $PO_4$-equivalents of eutrophication potential and 0.842 million GJ as energy consumption below 2,000 levels. This LCA study comparing two Japanese domestic livestock concentrate feed supply systems showed that the stage of feed transport contributed most to global warming and the stage of emission from the soil contributed most to acidification and eutrophication. The Japanese domestic livestock industry could participate in emissions trading with $CO_2$-equivalents reduced by shifting from some imported US corn as a concentrate feed to domestic barley planted in land left fallow. In that case the Japanese government could launch emissions trading in accordance with Kyoto Protocol in the future.