• Title/Summary/Keyword: Barkhausen avalanches

Search Result 4, Processing Time 0.023 seconds

Study on Barkhausen Avalanches in Fe Thin Film (Fe 박막에서의 박하우젠 현상 연구)

  • Lee, Hun-Sung;Ryu, Kwang-Su;Shin, Sung-Chul;Kang, Im-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.176-179
    • /
    • 2009
  • We report a direct observation of Barkhausen avalanches in 50-nm Fe film, using a magneto-optical microscope magnetometer, capable of time-resolved domain observation. The time-resolved domain-evolution patterns exhibit that the occurrence of Barkhausen jump is random with respect to interval, size, and location. From the repetitive measurements more than 1000 times, we found that the probability distribution of Barkhausen jump size follows a power-law distribution and the critical exponent reveals the value of 1.14 $\pm$ 0.03.

Critical Scaling Behavior of Barkhausen Avalanches in Ferromagnetic Nanothin Films

  • Shin, Sung-Chul;Kim, Dong-Hyun;Choe, Sug-Bong;Ryu, Kwang-Su;H. Akinaga
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.260-261
    • /
    • 2003
  • It is recognized that the magnetization reverses with a sequence of discrete and jerky jumps, known as the Barkhausen effect. Recently, interest in the Barkhausen effect has grown as it is a good example of dynamical critical behavior, evidenced by experimental observation of a power law distribution of the Barkhausen jump size. So far, most experimental studies have been carried out on bulk samples using a classical inductive technique, which is difficult to apply to thin film samples mainly due to the ]ow signal intensity. For this reason, very few experiments have been done on two-dimensional ferromagnetic thin films. In this talk, we report a direct domain observation of Barkhausen avalanche at criticality in Co and MnAs thin films investigated by means of a magnetooptical microscope magnetometer (MOMM), capable of time-resolved domain observation with an image grabbing rate of 30 frames/s in real time. In Fig. 1, we demonstrate a series of six representative domain-evolution patterns of 25-nm Co film observed successively by means of the MOMM, where one can directly witness Barkhausen avalanche.

  • PDF