• Title/Summary/Keyword: Barium ferrite

Search Result 64, Processing Time 0.059 seconds

Fabrication of barium titanate-bismuth ferrite fibers using electrospinning

  • Baji, Avinash;Abtahi, Mojtaba
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.183-192
    • /
    • 2013
  • One-dimensional multiferroic nanostructured composites have drawn increasing interest as they show tremendous potential for multifunctional devices and applications. Herein, we report the synthesis, structural and dielectric characterization of barium titanate ($BaTiO_3$)-bismuth ferrite ($BiFeO_3$) composite fibers that were obtained using a novel sol-gel based electrospinning technique. The microstructure of the fibers was investigated using scanning electron microscopy and transmission electron microscopy. The fibers had an average diameter of 120 nm and were composed of nanoparticles. X-ray diffraction (XRD) study of the composite fibers demonstrated that the fibers are composed of perovskite cubic $BaTiO_3$-$BiFeO_3$ crystallites. The magnetic hysteresis loops of the resultant fibers demonstrated that the fibers were ferromagnetic with magnetic coercivity of 1500 Oe and saturation magnetization of 1.55 emu/g at room temperature (300 K). Additionally, the dielectric response of the composite fibers was characterized as a function of frequency. Their dielectric permittivity was found to be 140 and their dielectric loss was low in the frequency range from 1000 Hz to $10^7$ Hz.

Characterization and Electrochemical Performance of Composite BSCF Cathode for Intermediate-temperature Solid Oxide Fuel Cell

  • Kim, Yu-Mi;Kim-Lohsoontorn, Pattaraporn;Bae, Joong-Myeon
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • The composite barium strontium cobalt ferrite (BSCF) cathodes were investigated in the intermediate temperature range of solid oxide fuel cells (SOFCs). The characteristics and electrochemical performances of composited BSCF/samarium doped ceria (SDC); BSCF/gadolinium doped ceria (GDC); and BSCF/SDC/GDC were compared to single BSCF cathode. The BSCF used in this study were synthesized using glycine nitrate process and mechanically mixing was used to fabricate a composite cathode. Using a composite form, the thermal expansion coefficient (TEC) could be reduced and BSCF/SDC/GDC exhibited the lowest TEC value at $18.95{\times}10^{-6}K^{-1}$. The electrochemical performance from half cells and single cells exhibited nearly the same trend. All the composite cathodes gave higher electrochemical performance than the single BSCF cathode (0.22 $Wcm^{-2}$); however, when two kinds of electrolyte were used (BSCF/SDC/GDC, 0.36$Wcm^{-2}$), the electrochemical performance was lower than when the BSCF/SDC (0.45 $Wcm^{-2}$) or BSCF/GDC (0.45 $Wcm^{-2}$) was applied as cathode ($650^{\circ}C$, 97%$H_2$/3%$H_2O$ to the anode and ambient air to the cathode).

Preparation of C-plane oriented BaFe12O19 film by electrospray deposition of colloidal precursor particles (정전분무 장치를 이용한 C축 일방향 바륨페라이트(BaFe12O19) 박막형성)

  • Lee, Hye Moon;Kim, Yong Jin
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 2010
  • New process consisting of electrospray and epitaxial crystal growth processes was applied to the preparation of c-plane oriented barium ferrite ($BaFe_{12}O_{19}$) thin film for high density magnetic recording media. Sodium citrate aided process was proper to preparation of amorphous $BaFe_{12}O_{19}$ nanoparticles with geometric mean diameter of 3 nm and geometric standard deviation of 1.1. The electrospray was applicable to the prepare of amorphous $BaFe_{12}O_{19}$ thin film on a substrate, and the film thickness could be controlled by adjusting the electrospray deposition time. The c-plane oriented $BaFe_{12}O_{19}$ thin film was successfully prepared by 3 step annealing process of the $BaFe_{12}O_{19}$ amorphous film on a sapphire($Al_2O_3$) substrate; annealing at $350^{\circ}C$ for 30 min, annealing at $500^{\circ}C$ for 30 min, and annealing at $700^{\circ}C$ for 60 min.

Structural and Magnetic Properties of Z-type Barium Ferrite (Z-type 바리움 페라이트의 구조 및 자기적 성질)

  • Nam, In Tak
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.119-123
    • /
    • 2008
  • Structural and magnetic properties of $CO_{1-x}Zn_xZ$ ($Ba_3Co_{1-x}Zn_xFe_{24}O_{41}$) hexa-ferrite are studied using XRD, VSM and SEM, respectively. Powder was prepared from co-precipitation and firstly heat treated at $1350^{\circ}C$ for 6 hours in $O_2$ atmosphere. Second heat treatment was performed at 900, 1000, $1100^{\circ}C$ for 6 hours in air, respectively. Saturation magnetization value of first heat treated powder is acceptable and coercivity is high for applying to device. These result may be originated from incomplete formation reaction from M and Y phases to Z phase. Second heat treatment leads to small value of coercivity.

  • PDF

Microwave Absorbing Properties of M-type Barium Ferrites with BaTi0.5Co0.5Fe11O19 Composition in Ka-band Frequencies (BaTi0.5Co0.5Fe11O19 조성을 갖는 M형 바륨 페라이트의 Ka-밴드 전파흡수특성)

  • Kim, Yong-Jin;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.203-208
    • /
    • 2009
  • Magnetic and Ka-band absorbing properties have been investigated in Ti-Co substituted M-type barium hexaferrites with $BaTi_{0.5}Co_{0.5}Fe_{11}O_{19}$ composition. The ferrite powders were prepared by conventional ceramic processing technique and used as absorbent fillers in ferrite-rubber composites. The magnetic properties were measured by vibrating sample magnetometer. The complex permeability and dielectric constant were measured by using the WR-28 rectangular waveguide and network analyzer in the frequency range 26.5~40 GHz. For the Ti-Co substituted M-hexaferrites, the ferromagnetic resonance is observed at Ka-band (29.4 GHz). The matching frequency and matching thickness are determined by using the solution map of impedance matching. A wide band microwave absorbance is predicted with controlled ferrite volume fraction and absorber thickness.

Formation Process of Barium Ferrite Crystallites in Molten Salts and its Magnetic properties (용융염내에서의 Ba-ferrite 결정의 생성과정 및 그 자기적 특성)

  • 정지형;김창곤;윤석영;신학기;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1015-1022
    • /
    • 2001
  • In this study, formation process of Ba-ferrite by using molten salt synthesis and its magnetic properties were investigated. Among starting materials, BaC $O_3$was only soluble in the molten salts, but other starting material such as $\delta$-FeOOH or F $e_2$ $O_3$was not soluble even at 105$0^{\circ}C$. It implies that the dissolved $Ba^{2+}$ diffused on surfaces of F $e_2$ $O_3$(or $\delta$-FeOOH), therefore, Ba-ferrtites were formed through surface reaction. However, the magnetic properties of Ba-ferrite prepared by two starting materials (F $e_2$ $O_3$and $\delta$-FeOOH) were not different. On the other hand, compared $\delta$-FeOOH with F $e_2$ $O_3$m, morphologies and dispersibility of Ba-ferrites prepared by using $\delta$-FeOOH were good and Ba-ferrites were obtaioned at lower temperature.

  • PDF

Fabrication of Barium Oxide Ferrite Magnet-II (바리움 훼라이트 자석의 시작 - II)

  • 백용현
    • 전기의세계
    • /
    • v.21 no.6
    • /
    • pp.17-20
    • /
    • 1972
  • The magnetic properties of Ba-Ferrite ( $M^{+2}$O.nF $e_{2}$ $O_{3}$ is highly improved under the condition of composition ratio n=4.4 when B $i_{2}$ $O_{3}$ is added to Ferrite, the adding amount and sintering temperature which affect the magnetic properties were investigated and the following results; were obtained; 1. Magnetic properties are varied with B $i_{2}$ $O_{3}$ content and singering temperature, and coercive force and residual induction can be improved with B $i_{2}$ $O_{3}$. 2. The optimal content of B $i_{2}$ $O_{3}$ amount is about 4 mol %, 3. Without the addition of B $i_{2}$ $O_{3}$, the optimal sintering temperature is about 1300.deg. C, but when 4 mol % of B $i_{2}$ $O_{3}$ is added, the optimal sintering temperature falls to the range of 900.deg. C to 1100.deg. C and it also improves magnetic properties. 4. Residual induction increases as the singering temperature is raised to 1100.deg. C. Coercive force also increased as the sintering temperature is raised to 1000.deg. C, but it rapidly decreases when sintering temperature goes beyond 1000.deg. C. 5. Only a negligible change may be noticed in the decrease of Curie temperature by the addition of about 4 mol % of B $i_{2}$ $O_{3}$.

  • PDF