• 제목/요약/키워드: Barium Ferrite

검색결과 64건 처리시간 0.028초

Cobalt가 치환된 Barium Ferrite 분말 제조 시 자기적 특성변화 (Changes in Magnetic Properties When Manufacturing Cobalt-substituted Barium Ferrite Powder)

  • 엄명헌;연제욱;이차진;하범용
    • 한국산학기술학회논문지
    • /
    • 제21권10호
    • /
    • pp.30-39
    • /
    • 2020
  • 본 연구에서는 Sol-Gel 방법을 이용하여 단일상의 Barium ferrite 분말을 제조하였으며, 이때 Ba에 대한 Fe(Fe/Ba)의 몰비와 열처리 온도를 달리하여 단일상의 Barium ferrite를 제조하기 위한 최적의 실험조건을 찾고자 하였다. 또한 고밀도 자기기록매체에 사용되기 위한 2.5 ~ 5.5 kOe 크기의 보자력을 가지는 ferrite 미립자 제조를 위해 보자력 제어에 뛰어난 효과를 지닌 cobalt를 첨가제로 하여 cobalt가 치환된 Barium ferrite 미립자를 제조하고 이들에 대한 자기적 특성 변화를 조사하였다. 제조된 Barium ferrite의 결정구조 및 단일상의 합성여부를 확인하기 위해 X-Ray Diffractometer(XRD), Thermogravimetric-Differential Thermal Analysis(TG-DTA), Field Emission Scanning Electron Microscope(FE-SEM)을 이용하여 분석하였으며, 화학적 구조와 조성의 분석을 위해 Fourier Transform Infrared Spectroscopy(FT-IR), Energy Dispersive X-Ray Spectrometer(EDS)를 사용하였다. 또한 Vibrating Sample Magnetometer(VSM)을 통해 cobalt가 치환된 Barium ferrite 분말의 보자력을 측정하였다. 그 결과 단일상의 Barium ferrite는 Fe/Ba의 몰비가 10, 900 ℃의 열처리 온도에서 가장 잘 합성되었다. Co의 첨가량이 증가할수록 보자력은 감소하였으며 Fe에 대한 Co(Co/Fe)의 몰비가 0.16 이내 일 때, 고밀도 자기기록매체에 사용할 수 있는 보자력 값인 2.5 ~ 5.5 kOe를 가지는 Barium ferrite가 합성되었다.

Preparation and Magnetic Properties of Ba-Ferrite Particles Using the Supercritical Water Crystallization Method

  • Nam, Sung-Chan;Kim, Kun-Joong;Park, Sang-Do
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2000년도 International Symposium on Magnetics The 2000 Fall Conference
    • /
    • pp.433-440
    • /
    • 2000
  • Barium ferrite particles were synthesized from Ba(NO$_3$)$_2$, Fe(NO$_3$)$_3$ and KOH mixed solutions using hydrothermal crystallization in supercritical water. The experimental apparatus for production of barium ferrite is a flow-type apparatus. Fine barium ferrite particles were produced because supercritical water causes the metal hydroxides to be rapidly dehydrated before significant growth takes place. The effects of Fe/Ba ratio and reaction time on the formation, particle size, and magnetic properties of barium ferrite were studied. When Fe/Ba ratio were varied from 0.5 to 12, single-phase barium ferrite powder was only produced in the range of 0.5〈Fe/Ba〈2. Also, with elevating reaction time, the BaO.6Fe$_2$O$_3$ particle size grew smaller. Especially, uniform barium hexaferrite particles of size 100-200nm were obtained at 80sec. In this study, therefore, single-phase barium ferrite particles are highly stable and can be produced continuously in a reaction time of less then 2min.

  • PDF

Synthesis of Barium Ferrite Powder by the Coprecipitation Method using Iron Pickling Waste Acid

  • Youngjae Shim;Kim, Dong-Whan;Kim, Guk-Tae
    • 한국세라믹학회지
    • /
    • 제38권5호
    • /
    • pp.401-404
    • /
    • 2001
  • Barium ferrite powders were synthesized by the coprecipitation method using iron-pickling waste acid (IPWA) and BaCl$_2$$.$2H$_2$O as raw materials. Fe$\^$2+/ ions in the IPWA, which contains both Fe$\^$2+/ and Fe$\^$3+/ ions, were oxidized into Fe$\^$3+/ ions using H$_2$O$_2$. Proper amount of BaCl$_2$$.$2H$_2$O was dissolved into the oxidized IPWA. Using NaOH, Ba$\^$2+/ and Fe$\^$3+/ ions were coprecipitated as Ba(OH)$_2$and Fe(OH)$_3$. The coprecipitated Ba(OH)$_2$and Fe(OH)$_3$were washed and dried. Barium ferrite powders were obtained by calcining the dried Ba(OH)$_2$and Fe(OH)$_3$mixture from 400$\^{C}$ to 1000$\^{C}$ with a 100$\^{C}$ interval. Barium ferrite powders were characterized by X-ray diffraction, SEM, and VSM. It was found that barium ferrite powders could be synthesized at around 630$\^{C}$. The synthesized barium ferrite powders showed hexagonal plate shapes with a fairly uniform size. The barium ferrite powder calcined at 900$\^{C}$ showed good magnetic properties, saturation magnetization of 67emu/g and maximum coercivity of 5000 Oe.

  • PDF

Fabrication of Barium Ferrite Films by Sol-Gel Dip Coating and Its Properties.

  • T. B. Byeon;W. D. Cho;Kim, T. O.
    • Journal of Magnetics
    • /
    • 제2권1호
    • /
    • pp.16-21
    • /
    • 1997
  • Those were investigated, the crystallographic, morphological, and magnetic properties of barium ferrite film (SiO2/Si substrate) prepared by sol-gel dip coating. Appropriate sol was prepared by dissolvin barium and iron nitrate in ethylene glycol at 80$^{\circ}C$. To obtain the films, thermally oxidized p-type silicon substrate with (111) of crystallographic orientation were dipped into the sol, dried at 250$^{\circ}C$ to remove organic material, and heated at 800$^{\circ}C$ for 3 hours in air for the crystallization of barium ferrite. It was found that the particles of barium ferrite formed on the substrate exhibited needle-like shape placing parallel to the substrate and its c-axis is long axis direction. There was tendency that the coercive force in horizontal direction to the substrate was higher than that in vertical direction to it. This tendency was profound in large thickness.

  • PDF

Ba-Sol을 도포한 $\delta$-FeOOH로부터 Ba-Ferrite 단결정 미리자의 제조와 그 자기적 특성 (The Preparation and Magnetic Properties of Single-Crystallite of Ba-Ferrite from Ba-Sol Coated $\delta$-FeOOH)

  • 박영도;이훈하;이재형;오영우;김태옥
    • 한국세라믹학회지
    • /
    • 제32권12호
    • /
    • pp.1383-1391
    • /
    • 1995
  • Hexagonal $\delta$-FeOOH was coated with Ba-Sol, which was produced by hydrolizing Ba(OC2H5)2, Ba-Sol coated $\delta$-FeOOH spread on a stainless plate, dried at 8$0^{\circ}C$ and then heat-treated. In this way, Ba-ferrite fine particles were produced. although there was a difference in a degree of hydrolysis of Ba(OC2H5)2, crystalline phase of Ba-ferrite appeared around 617$^{\circ}C$, and Ba-ferrite single phase was obtained after heat treatment at 80$0^{\circ}C$ for 2 hr. When Ba-ferrite was made from Ba-Sol coated $\delta$-FeOOH, $\delta$-FeOOH was thermally decomposed to $\alpha$-Fe2O3 at $700^{\circ}C$, producing a porous structure which was observed by TEM photographs. But the porous structure was not observed at 80$0^{\circ}C$. Ba-ferrite, heat-treated at 80$0^{\circ}C$ for 2 hr, had mean particle size of 1000$\AA$, lattice parameter of a0=5.889243 $\AA$ and c0=23.214502 $\AA$, a saturation magnetization ($\sigma$8) of 45.3 emu/g and a coercive force (Hc) of 5200Oe.

  • PDF

Barium Ferrite 조직구조(組織構造)에 관(關)한 연구(硏究)(제 1 보)(第 1 報) (Studies on Microstructure of Barium Ferrite (Ist. Report))

  • 안영필;이광;황보한;도명기
    • Applied Microscopy
    • /
    • 제1권1호
    • /
    • pp.43-48
    • /
    • 1969
  • X-ray diffraction intensity of barium ferrite sintered at $1280^{\circ}C$ as first sintering, varing mole ratio of barium carbonate and iron (III) oxide was checked. The results corresponed to of that magnetic coercivity in previous peport. The microstructure and sintering condition were observed-by means of two step replica method without etching by electron microscope.

  • PDF

Preparation and Magnetic Properties of Acicular Ba-Ferrite Powder

  • Lee, Hak-Dong;Nam, Joong-Hee;Oh, Jae-Hee
    • Journal of Magnetics
    • /
    • 제5권2호
    • /
    • pp.40-43
    • /
    • 2000
  • Acicular $\alpha-FeOOH\; and\; Ba(OH)_2\cdot8H_2O$ are starting materials in this study. This paper presents the characteristics of the contents of citric acid and heating condition for preparing acicular barium ferrite powder. They control particle shape, crystalline phase, magnetic properties of acicular barium ferrite powder So the effects of the contents of citric acid and heating condition are studied. The experimental condition for starting materials were 800~1000$\circ C$ in firing and 0~40 wt% citric acid, respectively, Ba-ferrite particles fired at the range of 800 $\circ C$to 900 $\circ C$ were maintained as acicular particle shape, but there were mixed particles of acicular and round shape after fired at 950 $\circ C$. Ba-ferrite powder of the single phase was obtained in firing at 900~1000$\circ C$ and with 20 wt.% citric acid. There were unreacted phase of $\alpha-Fe_2O_3 \;and \; BaFe_2O_4$ phases as a second phase in case of sintering at below 850 $\circ C$. Acicular barium ferrite powder of single phase was also produced in firing at 900 $\circ C$ with 20 wt.% citric acid. The saturation magnetization of single phase of acicular $BaFe_12O_19$powder was about 51 emu/g and coercivity was about 4200 Oe.

  • PDF