• Title/Summary/Keyword: Bar coating method

Search Result 40, Processing Time 0.023 seconds

Polylactic Acid Coating Affects the Ring Crush Strength of Linerboards

  • Lee, Jun-Ho;Rhim, Jong-Whan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.54-59
    • /
    • 2006
  • Paperboards used for linerboard of corrugated fiberboard box were coated with different concentrations of polylactic acid (PLA) solution and the effects of harsh environmental conditions such as high humidity and temperature (96% RH at $30^{\circ}C$ for up to 5 days), and freeze-thaw ($-20^{\circ}C$ for a day and then thaw at room temperature for 30 min) conditions on the ring crush (RC) strength of the boards were investigated. One to five percent PLA solutions were coated onto SC manila linerboard ($20{\times}27cm$) using a No. 20 wire bar coater and the ring crush strength was measured using a computer-controlled Advanced Universal Testing System in accordance with TAPPI Test Method T 822 om-93. The RC strength increased significantly when the concentration of coating solution increased and appreciable changes were found when the concentration increased from 0 to 2% (P<0.05). Similar pattern of results was found after 5-day storage at $30^{\circ}C$ and 96% RH. Although such highly humid condition increased moisture content in the samples up to 3.95 from 0.97 times, the RC strength decreased in the range from 29.9 to 48.5%. The freeze-thaw treatment increased the moisture content only up to 1.27% and the reduction in the RC strength ranged from 21.1 to 28.1 %. The results were promising: the samples coated with 5% PLA solution showed 29.9% reduction in the RC strength while that of control was 48.5% during highly humid condition stated above.

Study of Thermal Behaviors on sub-50 nm Copper Nanoparticles by Selective Laser Sintering Process for Flexible Applications (선택적 레이저 공정을 이용한 구리 나노 입자의 소결 특징 분석 및 플렉서블 전자 소자 제작 기술 개발에 관한 연구)

  • Gwon, Jin-Hyeong;Jo, Hyeon-Min;Lee, Ha-Beom;Eom, Hyeon-Jin;Go, Seung-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.134-134
    • /
    • 2016
  • The effect of different thermal treatments on the sub-50 nm copper nanoparticles is examined in the aspects of chemical, electrical and surface morphology. The copper nanoparticles are chemically synthesized and fabricated for paste-type solution. Simple bar coating method is practiced as a deposition process to form copper thin film on a typical slide glass. Deposited copper thin films are annealed by two different routes: general tube furnace with 99.99 % Ar atmosphere and selective laser sintering process. The thermal behavior of the different thermal-treated copper thin films is compared by SEM, XRD, FT-IR and XPS analysis. In this study, the laser sintering process ensures low annealing temperature, fast working speed and ambient-accessible route. Moreover, the laser-sintered copper thin film shows good electrical property and enhanced chemical stability than conventional thermal annealing process. Consequently, the proposed laser sintering process can be compatible with plastic substrate for flexible applications.

  • PDF

Synthesis of transparent conductive film containing solution -deposited poly (3, 4-ethylenedioxythiophene) (PEDOT) and water soluble multi-walled carbon nanotubes

  • Tung, Tran Thanh;Kim, Won-Jung;Kim, Tae-Young;Lee, Bong-Seok;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.205-206
    • /
    • 2008
  • The transparent conductive film was prepared by bar coating method of poly (3, 4-ethylenedioxythiophene) (PEDOT) and poly (sodium 4-stylenesulfonate) grafted multi-walled carbon nanotubes (MWNT-PSS) nanocomposites solution on the polyethylene terephthalate (PET) film. In this case, multi-wall carbon nanotubes was treated by chemical methods to obtain water soluble MWNT-PSS and then blending with PEDOT. The non-covalent bonding of polymer to the MWNT surface was confirmed by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA) and Transmission electro microscope (TEM) investigation also showed a polymer-wrapped MWNT structure. Furthermore, the electrical, transmission properties of the transparent conductive film were investigated and compared with control samples are raw PEDOT films.

  • PDF

Development of Stretchable PZT/PDMS Nanocomposite Film with CNT Electrode

  • Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.400-403
    • /
    • 2013
  • The piezoelectric composite film of ferroelectric PZT ceramic ($PbZr_xTi_{1-x}O_3$) and polymer (PDMS, Polydimethylsiloxane) was prepared to improve the flexibility of piezoelectric material. The bar coating method was applied to fabricate flexible nanocomposite film with large surface area by low cost process. In the case of using metal electrode on the composite film, although there is no problem by bending process, the electrode is usually broken away from the film by stretching process. However, the well-attached, flexible CNT electrode on PZT/PDMS film improved flexibility, especially stretchability. PZT particles was usually settled down into polymer matrix due to gravity of the weighty particle, so to improve the dispersion of PZT powder in polymer matrix, small amount of additives (CNT powder, Carbon nanotube powder) was physically mixed with the matrix. By stretching the film, an output voltage of PZT(70 wt%)/PDMS with CNT (0.5 wt%) was measured.

Determining the Thickness of a Trilayer Thin-Film Structure by Fourier-Transform Analysis (푸리에 변환을 이용한 3층 구조 박막의 두께 측정)

  • Cho, Hyun-Ju;Won, Jun-Yeon;Jeong, Young-Gyu;Woo, Bong-Ju;Yoon, Jun-Ho;Hwangbo, Chang-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.143-150
    • /
    • 2016
  • The thickness of each layer in a multilayered system is determined by a Fourier-transform method using spectroscopic reflectance measurements. To verify this method, we first generate theoretical reflectance spectra for three layers, and these are fast-Fourier-transformed using our own Matlab program. Each peak of the Fourier-transformed delta function denotes the optical thickness of each layer, and these are transformed to physical thicknesses. The relative thickness error of the theoretical model is less than 1.0% while a layer's optical thickness is greater than 730 nm. A PI-(thin $SiO_2$)-PImultilayeredstructure produced by the bar-coating method was analyzed, and the thickness errors compared to SEM measurements. Even though this Fourier-transform method requires knowing the film order and the refractive index of each layer prior to analysis, it is a fast and nondestructive method for the analysis of multilayered structures.

Stability of PS Opals in Supercritical Carbon Dioxide and Synthesis of Silica Inverse Opals

  • Yu, Hye-Min;Kim, Ah-Ram;Moon, Jun-Hyuk;Lim, Jong-Sung;Choi, Kyu-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2178-2182
    • /
    • 2011
  • Recently, the synthesis of ordered macroporous materials has received much attention due to its potential use as photonic band gap materials.$^1$ In this study, we have used the three-dimensional (3D) latex array template impregnated with benzenesulfonic acid (BSA), which is capable of catalyzing the reaction using tetraethyl orthosilicate (TEOS) as a precursor and distilled water. The polystyrene (PS) templates were reacted with TEOS in $scCO_2$ at 40 $^{\circ}C$ and at 80 bar. In the reactor, TEOS was filtrated into the PS particle lattice. After the reaction, porous silica materials were obtained by calcinations of the template. The stability test of the PS template in pure $CO_2$ was conducted before the main experiment. Scanning electron microscopy (SEM) images showed that the reaction in $scCO_2$ takes place only on the particle surface. This new method using $scCO_2$ has advantages over conventional sol-gel processes in its capability to control the fluid properties such as viscosity and interfacial tension. It has been found that the reaction in $scCO_2$ occurs only on the particle surface, making the proposed technique as more rapid and sustainable method of synthesizing inverse opal materials than conventional coating processes in the liquid phase and in the vapor phase.

Properties of Temperature History of Lightweight Mortar for Fire Protection Covering Material in High Strength Concrete (고강도 콘크리트 내화피복용 경량 모르터의 온도이력 성상)

  • Lim, Seo-Hyung
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.45-50
    • /
    • 2012
  • The spalling causes the sever reduction of the cross sectional area with the exposure of the reinforcing steel, which originates a problem in the structural behaviour. By coating surface of high strength concrete with fireproof mortar, the high strength concrete is protected from the spalling in fire and the method to constrain the temperature increase of steel bar within the concrete. The purpose of this study is to investigate the temperature history properties of lightweight mortar using perlite and polypropylene fiber for fire protection covering material. For this purpose, selected test variables were the contents and length of polypropylene fiber. As a result of this study, it has been found that addition of polypropylene fiber to mortar modifies its pore structure and this causes the internal temperature to rise. And it has been found that a new lightweight mortar can be used in the fire protection covering material.

The Coating Effects of Al2O3 on a Li[Li0.2Mn0.54Co0.13Ni0.13]O2 Surface Modified with (NH4)2SO4

  • Oh, Ji-Woo;Oh, Rye-Gyeong;Hong, Jung-Eui;Yang, Won-Geun;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1516-1522
    • /
    • 2014
  • A series of 20 wt % $(NH_4)_2SO_4$ and 3 wt % $Al_2O_3$ surface treatments were applied to $Li[Li_{0.2}Mn_{0.54}Co_{0.13}Ni_{0.13}]O_2$ substrates. The $Li[Li_{0.2}Mn_{0.54}Co_{0.13}Ni_{0.13}]O_2$ substrates were synthesized using a co-precipitation method. Sample (a) was left pristine and variations of the 20 wt % $(NH_4)_2SO_4$ and 3 wt % $Al_2O_3$ were applied to samples (b), (c) and (d). XRD was used to verify the space group of the samples as R$\bar{3}$m. Additional morphology and particle size data were obtained using SEM imagery. The $Al_2O_3$ coating layers of sample (b) and (d) were confirmed by TEM images and EDS mapping of the SEM images. 2032-type coin cells were fabricated in a glove box in order to investigate their electrochemical properties. The cells were charged and discharged at room temperature ($25^{\circ}C$) between 2.0V and 4.8V during the first cycle. The cells were then charged and discharged between 2.0V and 4.6V in subsequent cycles. Sample (d) exhibited lower irreversible capacity loss (ICL) in the first charge-discharge cycle as compared to sample (c). Sample (d) also had a higher discharge capacity of ~250 mAh/g during the first and second charge-discharge cycles when compared with sample (c). The rate capability of the $Al_2O_3$-coated sample (b) and (d) was lower when compared with sample (a) and (c). Sample (d), coated with $Al_2O_3$ after the surface treatment with $(NH_4)_2SO_4$, showed an improvement in cycle performance as well as an enhancement of discharge capacity. The thermal stability of sample (d) was higher than that of the sample (c) as the result of DSC.

Bond Behaviors of Epoxy Coated Reinforcements Using Direct Pull-out Test (직접 인발 시험을 이용한 에폭시 도막 철근의 부착 특성)

  • Kim, Jee-Sang;Lee, Sang-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.298-304
    • /
    • 2017
  • The corrosion of reinforcements embedded in concrete causes some durability problems in reinforced and prestressed concrete structures. The epoxy coated reinforcements are one of the effective and reliable methods to prevent corrosion of reinforcements. However, it has been known that the epoxy coating reduces the bond capacity of reinforcement to concrete. This paper investigates the bond behaviors of epoxy coated reinforcements experimentally using direct pull-out test. Bond behaviors of epoxy coated bars for various reinforcement diameters of 10, 19 and 29mm and thicknesses of cover concrete of 1, 2, 3, and $4.5c/d_b$ (ratio of cover to bar diameter) are examined. Total 66 specimens were manufactured and tested according to the RILEM standard method. As the diameters of the epoxy coated reinforcements increase, the difference of bond strength between epoxy coated reinforcements and uncoated bars also increases. Epoxy coated bars showed more than 85% bond performance compared to those of uncoated bars. A new formular for estimating basic development length of epoxy coated reinforcement based on equilibrium equation is proposed using this experimental result.

Electrical Conductivity, Optical Transmittance, and Oxidation Stability of Transparent Conductive Polymer Film Coated With Layered Pristine Single-walled Carbon Nanotube and Silver Nanowire (무정제 단일벽 탄소나노튜브와 은나노와이어가 적층으로 코팅된 투명전도성 고분자 필름의 전기 전도성, 광학 투과도 및 산화안정성)

  • Young Sil Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.456-462
    • /
    • 2023
  • An electrically conductive and transparent electrode was created by applying a dispersion of pristine single-walled carbon nanotubes (SWCNTs) and silver nanowires to a polyethylene terephthalate (PET) film using a bar coating method. The SWCNTs were added to increase the electrical conductivity and transmittance of the silver nanowires while also preventing the haze from increasing due to the stacking of multiple layers containing SWCNTs and silver nanowires on the PET substrate. The silver nanowires in the electrode were also found to be stable against oxidation. The transparent electrode displayed excellent electrical and optical properties, with a sheet resistance of 47 Ω/□, transmittance of 96.72%, and haze of 1.93%. Additionally, the sheet resistance of the electrode remained stable over time, with a change of only 6.4% after a constant temperature and humidity test, making it suitable for long-term use. A hybrid transparent electrode that is economically feasible and environmentally sustainable has been developed through the utilization of pristine SWCNT and silver nanowire.