• Title/Summary/Keyword: Bandwidth Utilization

Search Result 368, Processing Time 0.025 seconds

A Study on Buffer and Shared Memory Optimization for Multi-Processor System (다중 프로세서 시스템에서의 버퍼 및 공유 메모리 최적화 연구)

  • Kim, Jong-Su;Mun, Jong-Uk;Im, Gang-Bin;Jeong, Gi-Hyeon;Choe, Gyeong-Hui
    • The KIPS Transactions:PartA
    • /
    • v.9A no.2
    • /
    • pp.147-162
    • /
    • 2002
  • Multi-processor system with fast I/O devices improves processing performance and reduces the bottleneck by I/O concentration. In the system, the Performance influenced by shared memory used for exchanging data between processors varies with configuration and utilization. This paper suggests a prediction model for buffer and shared memory optimization under interrupt recognition method using mailbox. Ethernet (IEEE 802.3) packets are used as the input of system and the amount of utilized memory is measured for different network bandwidth and burstiness. Some empirical studies show that the amount of buffer and shared memory varies with packet concentration rate as well as I/O bandwidth. And the studies also show the correlation between two memories.

A Study on Guaranteed Quality of Service in Multiplexed MPEG video sources over BcN Network (BcN망에서 다중화된 MPEG 비디오소스의 QoS 보장 방식)

  • Park Joon-Yul;Lee Han-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.78-83
    • /
    • 2006
  • In this paper, we propose Active bandwidth allocation scheme of multiplexed streamed MPEG video sequences over BcN network. In order to real time processing, multiplexed source is estimated by linear-prediction per measurement period. n the result target quality value were not sufficient, we proposed a over-allocation method and a reallocation one to guarantee QoS. We used two kinds of sources, one is random multiplexed source made of four different video sources, the other is the one considered the arrange of I frame in the sequence. With those sources, we analyzed the linear prediction, compared over-allocation with reallocation method. As a result, In both schemes, the objected target quality value is achieved, the sufficient valuce bandwidth under 10% when measurement period is over 1.8 sec, the utilization is over 0.9. Especially, the Target of quality value of the reallocation scheme is better at the same condition.

A Design of MAC Protocol for Dynamic WDM Channel and Bandwidth Allocation in TDM-PON (TDM-PON에서 동적 WDM 채널 및 대역폭 할당을 위한 MAC 프로토콜 설계 연구)

  • Lee Sung-Kuen;Kim Eal-Lae;Lee Yong-Won;Lee Sang-Rok;Jung Dae-Kwang;Hwang Seong-Taek;Oh Yun-Je;Park Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.777-784
    • /
    • 2006
  • In this paper, we propose the PON-based access network based on conventional TDM-PON architecture, which utilizes WDM wavelength channel and bandwidth dynamically. It is also described a dynamic MAC protocol in order to increase the number of subscribers and efficiency of resource utilization. Of particular importance in the proposed approach for MAC protocol is that the wavelength channel and time slot for up/downlink is dynamically allocated according to the required QoS level and the amount of data in data transmission, through the dedicated control channel between OLT and ONU. We evaluate the performance of average packet end-to-end delay in a statistical analysis and numerical analysis. In addition, through simulations with various traffic models, we verified the superior performance of the proposed approach by comparing with the results of other E-PONs.

Gateway Strategies for VoIP Traffic over Wireless Multihop Networks

  • Kim, Kyung-Tae;Niculescu, Dragos;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.24-51
    • /
    • 2011
  • When supporting both voice and TCP in a wireless multihop network, there are two conflicting goals: to protect the VoIP traffic, and to completely utilize the remaining capacity for TCP. We investigate the interaction between these two popular categories of traffic and find that conventional solution approaches, such as enhanced TCP variants, priority queues, bandwidth limitation, and traffic shaping do not always achieve the goals. TCP and VoIP traffic do not easily coexist because of TCP aggressiveness and data burstiness, and the (self-) interference nature of multihop traffic. We found that enhanced TCP variants fail to coexist with VoIP in the wireless multihop scenarios. Surprisingly, even priority schemes, including those built into the MAC such as RTS/CTS or 802.11e generally cannot protect voice, as they do not account for the interference outside communication range. We present VAGP (Voice Adaptive Gateway Pacer) - an adaptive bandwidth control algorithm at the access gateway that dynamically paces wired-to-wireless TCP data flows based on VoIP traffic status. VAGP continuously monitors the quality of VoIP flows at the gateway and controls the bandwidth used by TCP flows before entering the wireless multihop. To also maintain utilization and TCP performance, VAGP employs TCP specific mechanisms that suppress certain retransmissions across the wireless multihop. Compared to previous proposals for improving TCP over wireless multihop, we show that VAGP retains the end-to-end semantics of TCP, does not require modifications of endpoints, and works in a variety of conditions: different TCP variants, multiple flows, and internet delays, different patterns of interference, different multihop topologies, and different traffic patterns.

Dynamic Bandwidth Allocation Algorithm with Two-Phase Cycle for Ethernet PON (EPON에서의 Two-Phase Cycle 동적 대역 할당 알고리즘)

  • Yoon, Won-Jin;Lee, Hye-Kyung;Chung, Min-Young;Lee, Tae-Jin;Choo, Hyun-Seung
    • The KIPS Transactions:PartC
    • /
    • v.14C no.4
    • /
    • pp.349-358
    • /
    • 2007
  • Ethernet Passive Optical Network(EPON), which is one of PON technologies for realizing FTTx(Fiber-To-The-Curb/Home/Office), can cost-effectively construct optical access networks. In addition, EPON can provide high transmission rate up to 10Gbps and it is compatible with existing customer devices equipped with Ethernet card. To effectively control frame transmission from ONUs to OLT EPON can use Multi-Point Control Protocol(MPCP) with additional control functions in addition to Media Access Control(MAC) protocol function. For EPON, many researches on intra- and inter-ONU scheduling algorithms have been performed. Among the inter-ONU scheduling algorithms, IPS(Interleaved Polling with Stop) based on polling scheme is efficient because OLT assigns available time portion to each ONU given the request information from all ONUs. Since the IPS needs an idle time period on uplink between two consecutive frame transmission periods, it wastes time without frame transmissions. In this paper, we propose a dynamic bandwidth allocation algorithm to increase the channel utilization on uplink and evaluate its performance using simulations. The simulation results show that the proposed Two-phase Cycle Danamic Bandwidth Allocation(TCDBA) algorithm improves the throughput about 15%, compared with the IPS and Fast Gate Dynamic Bandwidth Allocation(FGDBA). Also, the average transmission time of the proposed algorithm is lower than those of other schemes.

Suggestion of an Fiber Channel-Embedded IPTV STB for Optical Fiber-based IPTV Networks (광섬유 기반 IPTV 네트워크를 위한 FC 내장형 IPTV STB 제안)

  • Chung, Sung-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.213-219
    • /
    • 2017
  • Recently, the Internet Protocol Television (IPTV) services have become very common, enabling various Internet-based services as well as watching TV. In the IPTV system, a Set-Top box (STB) plays a key role as a network terminal device that transmits and receives realtime multimedia contents. In addition, the IPTV networks are usually supported by broadband optical fiber-base network such as fiber-to-the-home (FTTH), However, a general IPTV STB is regarded as one of the local area network (LAN)-attached devices while sharing the bandwidth of the LAN (e.g., Ethernet). In order to overcome the limited bandwidth utilization by fully facilitating the broadband bandwidth (e.g., 1 Gbps) of the optical fiber-based network, we propose a new FC (Fiber Channel)-embedded IPTV STB which can be directly attached to the optical fiber network. Then, we verify that the impacts of the proposed FC-embedded IPTV STB by organizing the the FC-AL (Fiber Channel-Arbitration Loop) network equipped with the FC-embedded IPTV We measures the average Start-up Delay, Average Reject Ratio and the Number of Concurrent Users through extensive simulations to investigate the performances of the suggested FC-AL-based IPTV network. Surprisingly, the IPTV network architecture with the proposed FC-embedded IPTV STBs has an excellent average start-up delay of less than 10 msec, an acceptable average reject ratio of less than 3 % as well as a linear increase of the number of concurrent users when extending the architecture. This reveals that the proposed FC embedded STB has a superior impacts on the performance of the entire IPTV network by effectively utilizing the broadband bandwidth of the fiber optic-based network.

An Efficient Transport Protocol for Ad Hoc Networks: An End-to-End Freeze TCP with Timestamps

  • Cho, Sung-Rae;Sirisena, Harsha;Pawlikowski, Krzysztof
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.376-386
    • /
    • 2004
  • In ad hoc networks, loss-based congestion window progression by the traditional means of duplicate ACKs and timeouts causes high network buffer utilization due to large bursts of data, thereby degrading network bandwidth utilization. Moreover, network-oriented feedbacks to handle route disconnection events may impair packet forwarding capability by adding to MAC layer congestion and also dissipate considerable network resources at reluctant intermediate nodes. Here, we propose a new TCP scheme that does not require the participation of intermediate nodes. It is a purely end-to-end scheme using TCP timestamps to deduce link conditions. It also eliminates spurious reductions of the transmission window in cases of timeouts and fast retransmits. The scheme incorporates a receiver-oriented rate controller (rater), and a congestion window delimiter for the 802.11 MAC protocol. In addition, the transient nature of medium availability due to medium contention during the connection time is addressed by a freezing timer (freezer) at the receiver, which freezes the sender whenever heavy contention is perceived. Finally, the sender-end is modified to comply with the receiver-end enhancements, as an optional deployment. Simulation studies show that our modification of TCP for ad hoc networks offers outstanding performance in terms of goodput, as well as throughput.

A Data Burst Assembly Algorithm in Optical Burst Switching Networks

  • Oh, Se-Yoon;Hong, Hyun-Ha;Kang, Min-Ho
    • ETRI Journal
    • /
    • v.24 no.4
    • /
    • pp.311-322
    • /
    • 2002
  • Presently, optical burst switching (OBS) technology is under study as a promising solution for the backbone of the optical Internet in the near future because OBS eliminates the optical buffer problem at the switching node with the help of no optical/electro/optical conversion and guarantees class of service without any buffering. To implement the OBS network, there are a lot of challenging issues to be solved. The edge router, burst offset time management, and burst assembly mechanism are critical issues. In addition, the core router needs data burst and control header packet scheduling, a protection and restoration mechanism, and a contention resolution scheme. In this paper, we focus on the burst assembly mechanism. We present a novel data burst generation algorithm that uses hysteresis characteristics in the queueing model for the ingress edge node in optical burst switching networks. Simulation with Poisson and self-similar traffic models shows that this algorithm adaptively changes the data burst size according to the offered load and offers high average data burst utilization with a lower timer operation. It also reduces the possibility of a continuous blocking problem in the bandwidth reservation request, limits the maximum queueing delay, and minimizes the required burst size by lifting up data burst utilization for bursty input IP traffic.

  • PDF

Enhanced EDCF Algorithm Supporting Fair Transmissions in IEEE 802.11 WLAN (IEEE 802.11e 무선 LAN에서 공평성 있는 전송을 지원하는 Enhanced EDCF 알고리즘)

  • Kim Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1647-1653
    • /
    • 2004
  • In a contention-based wireless LAN protocol, maximization of channel utilization and fair bandwidth allocations are main topics to deal with. But it is very difficult to achieve these two goals simultaneously. Many studies have been done to achieve these goals. In this paper we propose a control mechanism to support fair transmissions among traffic classes in IEEE 802.11e Wireless LAN. The proposed algorithm uses short-term and long-term transmission times of each traffic classes to control their $CW_{min}$ for fairness. The proposed algorithm don't need to know the exact number of nodes in the networks to support fairness as other studies do. Furthermore any modifications in AP and mobile hosts are not required.

An Operating Strategy of Outer Networking of University According to Traffic Efficiency Analysis (트래픽 효율성 분석에 의한 대학 외부망의 운영 전략)

  • Choi Mu Hee;Ahn Byeong Tae;Kim Sung Jin;Ryu Si Kook;Kang Hyun Suk
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.1
    • /
    • pp.119-127
    • /
    • 2005
  • Each university in Korea has connected its campus network to outer network with a variety methods since every year KREN adopted an open bid in selecting a network service company. In particular many universities connected two or more outer networks have faced more complex decision problems about their network operations due to the intricacy of the networks. So, those university needs the system which helps the managers to select the optimum operating method for their campus networks. In this paper, campus network traffic efficiency based on utilization was analyzed using the manager's answers to the questions for traffic management. And, by the result of analysis, the link strategy to outer networks was suggested for the universities running simultaneously two outer networks.

  • PDF