• Title/Summary/Keyword: Bandpass

Search Result 657, Processing Time 0.027 seconds

The Bandpass Filter with Transmission Zero Using . the Effect of Effective Inductance and Multi-layer PCB (유효 인덕턴스 효과와 적층 PCB를 이용한 하나의 전송 영점을 갖는 대역 통과 필터)

  • Kim, Yu-Seon;Nam, Hun;Lee, Geon-Cheon;Seo, In-Jong;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1089-1095
    • /
    • 2006
  • In this paper, the circuit analysis of three-dimensional bandpass filter with transmission zero in multi-layer printed circuit board is presented. The equivalent circuit of bandpass filter is evaluated by microwave network analysis. Compare to the established paper that have configured the circuit model of filter except the effect of distribute element, the proposed model can include the effect. As a result, the multi-layer PCB bandpass filter with transmission zero has designed by extracting mutual capacitance from electrical component inside inductor. The structure size is only $10mm{\times}20mm{\times}1.251mm$. Measured data of the bandpass filter indicate 1.9 dB of insertion loss and 28 dB of return loss at the center frequency of 1.84 GHz, as well as 43 dB attenuation at the refraction frequency of 2.78 GHz.

An Active Tunable Bandpass Filter Design for High Power Application (고출력 특성을 고려한 능동 가변 대역 통과 여파기 설계)

  • Kim, Do-Kwan;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • In this paper, a high power active tunable bandpass filter made of dielectric resonators and varactor diodes is designed using the active capacitance circuit generating negative resistance for tuning cellular TX, RX band. An active capacitance circuit's series feedback circuit using GaAs HFET whose $P_{1dB}$ is 32 dBm is used for compensating the losses from the varactor diodes of the tunable bandpass filter. The tuning elements, the varactor diodes are used as the back-to-back configuration to achieve the high power performance, The designed active capacitance circuit improves the insertion loss characteristics. The designed 2-stage active tunable dielectric bandpass filter at cellular band can cover from 800 MHz to 900 MHz. The insertion losses at 836 MHz and 881.5 MHz with 25 MHz bandwidth are 0.48 dB and 0.39 dB, respectively. The $P_{1dB}$ of the designed bandpass filter at TX and RX band are measured as 19.5 dBm and 23 dBm, respectively.

A Study on Design of Dual-Bandpass Filters for Wireless LAN (무선 LAN용 이중 대역통과 필터의 설계에 관한 연구)

  • Jeon, Mi-Hwa;Kim, Eun-Mi;Kim, Dong-Il;Jeon, Joong-Sung;Kim, Min-Jung
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.481-487
    • /
    • 2008
  • Ship's wireless LAN was in the limelight as equipment of ease, cost reduction, various func tion al i ty. In the paper, a dual-bandpass filter for wireless LAN has proposed, which was designed by using dual-mode square loop resonator with square patch in compliance with 2.4 GHz and 5 GHz band of wireless LAN. The dual-bandpass filter could be designed by adjusting sizes of one perturbation element and three of reference elements in compliance with the frequency bands of 2.4 GHz and 5.8 GHz, Furthermore, new dual-bandpass filter was also designed by adjusting stopband of using open stubs in compliance with the frequency bands of 2.4 GHz and 5.2 GHz. The measured results for the fabricated dual-bandpass filters agreed well with the simulated ones, and hence, it was confirmed that the proposed design method is valid.

Highly Miniaturized and Performed UWB Bandpass Filter Embedded into PCB with SrTiO3 Composite Layer

  • Cheon, Seong-Jong;Park, Jun-Hwan;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.582-588
    • /
    • 2012
  • In this paper, a highly miniaturized and performed UWB bandpass filter has been newly designed and implemented by embedding all the passive elements into a multi-layered PCB substrate with high dielectric $SrTiO_3$ composite film for 3.1 - 4.75 GHz compact UWB system applications. The high dielectric composite film was utilized to increase the capacitance densities and quality factors of capacitors embedded into the PCB. In order to reduce the size of the filter and avoid parasitic EM coupling between the embedded filter circuit elements, it was designed by using a $3^{rd}$ order Chebyshev circuit topology and a capacitive coupled transformation technology. Independent transmission zeros were also applied for improving the attenuation of the filter at the desired stopbands. The measured insertion and return losses in the passband were better than 1.68 and 12 dB, with a minimum value of 0.78 dB. The transmission zeros of the measured response were occurred at 2.2 and 5.15 GHz resulting in excellent suppressions of 31 and 20 dB at WLAN bands of 2.4 and 5.15 GHz, respectively. The size of the fabricated bandpass filter was $2.9{\times}2.8{\times}0.55(H)mm^3$.

A Stepped Impedance Resonator Bandpass Filter with Superior Cut-off Response for ITS Application (우수한 차단 특성을 갖는 ITS용 SIR 대역 통과 여파기)

  • Nam Hee;Yun Tae-Soon;Lee Myeong-Gil;Lee Jong-Chul;Hong Ui-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.3 s.8
    • /
    • pp.73-78
    • /
    • 2005
  • In this paper, a bandpass filter with excellent cut off characteristic due to transmission zero using bypass coupling capacitor and with superior harmonic characteristic by interdigital capacitor is suggested. The measurement results for SIR bandpass filter with bypass coupling capacitor and interdigital capacitor show that the insertion loss is less than 1.9 dB and the return loss is better than 15.4 dB with 4.2 % bandwidth at the center frequency of 5.78 GHz.

  • PDF

Novel Compact Bandpass Filter Based on Folded Half Mode Substrate Integrated Waveguide Cavities

  • Gong, Ke;Hong, Wei;Chen, Jixin;Tang, Hongjun;Hou, Debin;Zhang, Yan
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.179-182
    • /
    • 2010
  • This paper proposed a novel compact bandpass filter with folded half mode substrate integrated waveguide (FHMSIW) cavities using two-layer printed circuit board(PCB) process. The area of the FHMSIW filter is reduced by nearly 50 % and 75 % compared with half mode substrate integrated waveguide(HMSIW) filter and substrate integrated waveguide(SIW) filter, respectively. A four-pole Chebyshev FHMSIW bandpass filter at C-band has been designed, simulated and fabricated. Measured results are presented and found to agree with the full-wave simulated results by using Ansoft HFSS. The filter shows good performance and compact size.

Design of a Metamaterial Bandpass Filter Using ZOR of the Modified Circular Mushroom Structure (변형된 원형 버섯 구조의 0차 공진을 이용한 메타 재질 대역 통과 여파기의 설계)

  • Jang, Geon-Ho;Kahng, Sung-Tek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.893-899
    • /
    • 2010
  • In this paper, the design of a new bandpass filter based on the modified circular mushroom metamaterial structure is proposed. In detail, half circular mushroom cells are used as the zeroth order resonators(ZOR), and an intermediate gap is adopted to introduce the coupling between neighboring ZOR resonators. The proposed bandpass filter design is validated by the circuit and 3D EM simulations and measurements compared to the target specifications, and the metamaterial properties are proved by the ZOR field distributions and dispersion diagram. Also, the effect of size reduction is addressed.

Fabrication and Characterization of Tunable Bandpass Filter using BST Thin Films

  • Kim, Il-Doo;Kim, Duk-Su;Park, Kyu-Sung;Kim, Ho-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.581-584
    • /
    • 2002
  • In this work, a CPW resonator was designed and fabricated to investigate the basic microwave properties, such as effective dielectric constant, of BST thin films. Their properties were used as basic data to simulate and design CPW tunable bandpass filter. We also report on gold/$Ba_{0.5}Sr_{0.5}TiO_3$(BST) ferroelectric thin film C-band tunable bandpass filters(BPFs) designed and fabricated on magnesium oxide substrates using CPW structure. The 2 pole filter was designed for a center frequency of 5.88 GHz with a bandwidth of 9 %. The BST based CPW filter offers a high sensitivity parameter as well as a low loss parameter. The tuning range for the bandpass filter with CPW structure was determined to be 170 MHz.

  • PDF

Equivalent Circuit Design of 2.4 GHz Band LTCC Bandpass Filters Using Multilayer Inter-Digital Resonators (적층 Inter-Digital 공진기를 이용한 2.4 GHz 대역 LTCC 대역통과 여파기의 등가회로 설계)

  • Sung Gyu-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.78-83
    • /
    • 2005
  • LTCC filters have been widely used to wireless terminals. They generally adopt the multilayer structure. Some of multilayer LTCC filters are made of symmetrical parallel-coupled lines and anti-symmetrical parallel-coupled lines to reduce the length of resonators. The equivalent circuit of parallel-coupled lines was analyzed and applied to bandpass filters using multilayer parallel-coupled line resonators. The three-pole bandpass filter with the center frequency of 2.45 GHz is designed by using the proposed equivalent circuit and the measured results have good agreement with the design results.

A Design of the Dual-Band Bandpass Filter Using a Coupling Controllable Dual-Mode Resonators (상·하측 대역의 대역폭 조절이 가능한 이중 대역 대역 통과 필터 설계)

  • Pyo, Hyun-Seong;An, Jae-Min;Kim, Kyoung-Keun;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • In this paper, we designed and fabricated a dual-band bandpass filter which can control upper and lower bandwidth using the transformed E-shaped dual-mode resonator. The filter is made the coupling between even-mode not to affect odd-mode resonant frequency by the transformed resonator to control upper bandwidth effectively. The cross coupling between input and output feed lines was employed to improve stopband characteristic. The bandpass filter has been designed to indicate the same bandwidth at center frequency 2 GHz and 3 GHz to show to control bandwidth.