• Title/Summary/Keyword: Bandgap engineering

Search Result 336, Processing Time 0.021 seconds

Radiation Hardness Evaluation of GaN-based Transistors by Particle-beam Irradiation (방사선빔 조사를 이용한 질화갈륨 기반 트랜지스터의 내방사선 특성 연구)

  • Keum, Dongmin;Kim, Hyungtak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1351-1358
    • /
    • 2017
  • In this work, we investigated radiation hardness of GaN-based transistors which are strong candidates for next-generation power electronics. Field effect transistors with three types of gate structures including metal Schottky gate, recessed gate, and p-AlGaN layer gate were fabricated on AlGaN/GaN heterostructure on Si substrate. The devices were irradiated with energetic protons and alpha-particles. The irradiated transistors exhibited the reduction of on-current and the shift of threshold voltage which were attributed to displacement damage by incident energetic particles at high fluence. However, FET operation was still maintained and leakage characteristics were not degraded, suggesting that GaN-based FETs possess high potential for radiation-hardened electronics.

A Study on Phase noise Reduction Technique in Oscillator Using PBG (PBG를 이용한 Oscillator의 Phase Noise Reduction에 관한 연구)

  • Oh Icsu;Seo Chulhun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a new technique to reduce the phase noise in microwave oscillators is proposed using the resonant characteristics of the Photonic Bandgap(PBG). We applied PBG structure to ground of the microstrip line resonator with the low Q(Quality factor). Therefore, we improved about 10 dBc in contrast to phase noise characteristic of the conventional microstrip line oscillator at 2.4 GHz @ 100 MHz offset. Output power is 7.09 dBm.

Design of Half-Wavelength Low-PASS Filter using EBG Structure (EBG 구조를 이용한 반파장 저역통과 여파기 설계)

  • Kang, Myung-Soo;Kim, Young-Tae;Park, Jun-Seok
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.376-379
    • /
    • 2003
  • In this raper, proposed easy half-wavelength LPF and acceptor structure in actuality manufacture using EBG (Electromagnatic Bandgap) structure for application of micro-strip circuit. Because conventional half-wavelength LPF and acceptor is narrow line-width of High impedance, actuality manufacture is difficult. Width that in proposed structure narrow microstrip line of High impedance EBG structure use and has equal impedance embodied to wide microstrip line. Also, it is seen that actuality manufacture is available applying to half-wavelength LPF that have cut-off Frequency of 3GHz.

  • PDF

The Effect of in situ Ultraviolet Irradiation on the Chemical Vapor Deposited ZnO Thin Films (증착 중 자외광 노광에 의한 산화 아연 박막의 특성 변화)

  • Kim, Bo-Seok;Baik, Seung Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.241-246
    • /
    • 2016
  • ZnO thin films have wide application areas due to its versatile properties as transparent conductors, wide-bandgap n-type semiconductors, gas sensor materials, and etc. We have performed a systematic investigation on ultraviolet-assisted CVD (chemical vapor deposition) method. Ultraviolet irradiation during the deposition of ZnO causes chemical reduction on the growing surface; which results in the reduction of the deposition rate, increase in the surface roughness, and decrease of the electrical resistivity. These effects produce larger characteristic variation with various deposition conditions in terms of surface morphology and optical/electrical properties compared to normal CVD deposited ZnO thin films. This versatile controllability of ultraviolet-assisted CVD can provide a larger processing options in the fabrication of nano-structured materials and flexible device applications.

Enhancement of TMD FET performance according to 2H-MoS2 monolayer structure

  • Choe, Jun-Haeng;Jeong, Gu-Hyeok
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.437-440
    • /
    • 2017
  • 본 논문에서는 Edison simulation을 이용하여 2D TMD(Transition Metal Dichalcogenides)물질인 $MoS_2$의 monolayer 구조에서 화학/물리적 특성 분석을 통해 대칭 구조인 $2H-MoS_2$의 안정성과 1.8 eV의 direct bandgap을 추출하여 전자재료로서의 가치를 확인하였다. 또한 Edison TMD FET 소자 특성 simulation을 이용하여 $2H-MoS_2$ 결정 면의 이방성으로 인한 소자 성능의 변화를 확인 하였고, 최적의 결정 면에서 최적화된 소자를 설계하여 29.6% 개선된 $I_{on}/I_{off}$ 값과 32.6% 개선된 mobility 값을 추출하였다.

  • PDF

The Effect of Sulfurization Temperature on CuIn(Se,S)2 Solar Cells Synthesized by Electrodeposition

  • Kim, Dong-Uk;Yun, Sang-Hwa;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.97-97
    • /
    • 2014
  • The properties of thin film solar cells based on electrodeposited $CuIn(Se,S)_2$ were investigated. The proposed solar cell fabrication method involves a single-step $CuInSe_2$ thin film electrodeposition followed by sulfurization in a tube furnace to form a $CuIn(Se,S)_2$ quaternary phase. A sulfurization temperature of $450-550^{\circ}C$ significantly affected the performance of the $CuIn(Se,S)_2$ thin film solar cell in addition to its composition, grain size and bandgap. Sulfur(S) substituted for selenium(Se) at increasing rates with higher sulfurization temperature, which resulted in an increase in overall band gap of the $CuIn(Se,S)_2$ thin film. The highest conversion efficiency of 3.12% under airmass(AM) 1.5 illumination was obtained from the $500^{\circ}C$-sulfurized solar cell. The highest External Quantum Efficiency(EQE) was also observed at the sulfurization temperature of $500^{\circ}C$.

  • PDF

UV Emission Characterization of ZnO Thin Films Depending on the Variation of Oxygen Pressure (분위기 산소압변화에 따른 ZnO박막의 UV발광 특성분석)

  • Baek, Sang-Hyeok;Lee, Sang-Yeol;Jin, Beom-Jun;Im, Seong-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.103-106
    • /
    • 2000
  • ZnO is a wide-bandgap II-IV semiconductor and has a variety of potnetial applications. ZnO exhibits good piezoelectric, photoelectric and optical properties, and is a good candidate for an electroluminescence device. ZnO films have been deposited on (001) sapphire by PLD technique. Nd:YAG pulsed laser was operated at a wavelength of $\lambda=355nm$. The ZnO films were deposited at oxygen pressures from base to 500 mTorr. The substrate temperatures was increased from $200^{\circ}C\; to\;700^{\circ}C$ films showed strong UV emission by increasing the partial oxygen pressure. We have investigated the relationship between partial oxygen pressure and the intensity of UV emission.

  • PDF

Properties of CdS Thin Films Prepared by Chemical Bath Deposition as a Function of Thiourea/CdAc2 Ratio in Solution (CBD법으로 제작된 CdS 박막의 thiourea/CdAc2 농도비에 따른 특성)

  • Song, Woo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.28-32
    • /
    • 2008
  • In this paper CdS thin films, which were widely used window layer of the CdS/CdTe and the CdS/$CuInSe_2$ heterojunction solar cell, were grown by chemical bath deposition, which is a very attractive method for low-cost and large-area solar cells, and the structural, optical and electrical properties of the films was studied. As the thiourea/$CdAc_2$ mole ratio was increased, the deposition rate of CdS films prepared by CBD was increased due to increasing reaction velocity in solution and the optical bandgap was increased at higher thiourea/$CdAc_2$ mole ratio due to larger grain size and continuous microstructure. The minimum resistivity of the films was at thiourea/$CdAc_2$ mole ratio of 3.

Surface and Structural Features of a-Si Thin Films Prepared by Various H2/H2+SiH4 Dilution (수소 가스 분율(H2/H2+SiH4)에 따른 비정질 실리콘 박막의 표면 및 구조 분석)

  • Kwon, Jin-Up
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.39-43
    • /
    • 2011
  • Amorphous silicon thin film was deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD). Each films were prepared in different dilution in the chamber gas. As a result, silicon crystallites and crystal volume fraction was increased with raising the hydrogen dilution in the gas and optical band gap was decreased. Increasement of the hydrogen contents in the chamber affected on surface roughness. In this study, thickness and surface roughness of the a-Si thin film by different hydrogen dilution was investigated by various techniques.

A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system

  • Lee, Heon-Bok;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.346-349
    • /
    • 2008
  • A metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) is proposed as an effective UV sensing device for integration with a GaN n-channel MISFET on auto-doped p-type GaN grown on a silicon substrate. Due to the high hole barrier of the metal-p-GaN contact, the dark current density of the fabricated MSM PD was less than $3\;nA/cm^2$ at a bias of up to 5 V. Meanwhile, the UV/visible rejection ratio was 400 and the cutoff wavelength of the spectral responsivity was 365 nm. However, the UV/visible ratio was limited by the sub-bandgap response, which was attributed to defectrelated deep traps in the p-GaN layer of the MSM PD. In conclusion, an MSM PD has a high process compatibility with the n-channel GaN Schottky barrier MISFET fabrication process and epitaxy on a silicon substrate.