• Title/Summary/Keyword: Band-pass

Search Result 963, Processing Time 0.036 seconds

A Dual-Band Through-the-Wall Imaging Radar Receiver Using a Reconfigurable High-Pass Filter

  • Kim, Duksoo;Kim, Byungjoon;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.164-168
    • /
    • 2016
  • A dual-band through-the-wall imaging radar receiver for a frequency-modulated continuous-wave radar system was designed and fabricated. The operating frequency bands of the receiver are S-band (2-4 GHz) and X-band (8-12 GHz). If the target is behind a wall, wall-reflected waves are rejected by a reconfigurable $G_m-C$ high-pass filter. The filter is designed using a high-order admittance synthesis method, and consists of transconductor circuits and capacitors. The cutoff frequency of the filter can be tuned by changing the reference current. The receiver system is fabricated on a printed circuit board using commercial devices. Measurements show 44.3 dB gain and 3.7 dB noise figure for the S-band input, and 58 dB gain and 3.02 dB noise figure for the X-band input. The cutoff frequency of the filter can be tuned from 0.7 MHz to 2.4 MHz.

The time response of second order band pass filter (2차식 대역통과여파기의 시간응답)

  • 고병준;김재공
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.8 no.5
    • /
    • pp.20-26
    • /
    • 1971
  • A function relationship between the envlope rise time and Q v91ue of band pass filter is studied by using the time response to the step and sinusodal inputs. It is discovered that the above relationship is linear in the very low frequency band. The filter was constructed by the Analog computer so as to do the function of 2nd order RC active band pass.

  • PDF

Design of Multilayer Ceramic Chip Band Pass Filter with an Attenuation Pole (감쇠극을 갖는 적층형 세라믹 칩 필터의 설계)

  • 강종윤;심성훈;최지원;박용욱;이동윤;윤석진;김현재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.740-743
    • /
    • 2003
  • A multi-layer ceramic (MLC) chip type band-pass filter (BPF) is presented. The MLC chip BPF has the benefits of low cost and small size. The BPF consists of coulped stripline resonators and coupling capacitors. The BPF is designed to have an attenuation pole at below the passband for a receiver band of IMT-2000 handset. The computer-aided design technology is applied for analysis of the BPF frequency characteristics. The passband and attenuation pole depend on the coupling between resonators and coupling capacitance. The frequency characterics of the passband and attenuation pole are analyzed with the variation of the coupling between resonators and coupling capacitance. An equivanlent circuit and structure of MLC chip BPF are proposed. The frequency characteristics of the BPF is well acceptable for IMT-2000 application.

Design of Ultra Wide Bandpass Filter by Metamaterial for KSTAR Reflectometry (KSTAR (Korea Superconducting Tokamak Advanced Research)용 Reflectometry를 위한 메타전자파 구조 광대역 대역 통과 여파기 설계)

  • Lee, Chong-Min;Sim, Woo-Seok;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.73-77
    • /
    • 2012
  • In this article, we designed a wide bandpass filter in order to apply microwave reflectometry for KSTAR. The proposed wide bandpass filter consists of a metamaterial structure which is to get a wide band, a lower insertion loss, and a high skirt. This is applied to VCO's output to enhance the linearity. A pass band is 18-28 GHz and the out of pass band is stopped over 20 dB. To confirm of the metamaterial, we suggest a dispersion diagram. The proposed filter in lower band and upper band of pass band is respectively a left handed and right handed characteristics. A group delay is below 0.5 ns.

Design of narrow band-pass filter using two fiber bragg gratings (광섬유 격자소자를 이용한 협대역 투과 필터의 설계)

  • 임종훈;이경식
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.82-88
    • /
    • 1998
  • We propose and design a new type of anrrow band-pass optical filter based on two fiber gratings with different reflection wavelength. The ripples occur in the spectra of the filter with two uniform fiber gratings. Our simulation results also show that the ripples disappear with the fiber gratings apodized to both gaussian and hyperbolic tangent function. The hyperbolic tangent function seems to be a better apodization function for improving the filter's performance in terms of narrow pass bandwidth and high transmission.

  • PDF

Tunable Band-pass Filters using Ba0.5Sr0.5TiO3 Thin Films for Wireless LAN Application (무선랜 대역용 Ba0.5Sr0.5TiO3 박막을 이용한 가변 대역 통과 여파기)

  • Kim, Ki-Byoung;Yun, Tae-Soon;Lee, Jong-Chul;Kim, Il-Doo;Lim, Mi-Hwa;Kim, Ho-Gi;Kim, Jong-Heon;Lee, Byungje;Kim, Na-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.819-826
    • /
    • 2002
  • In this paper, the performance of Au / $Ba_{0.5}Sr_{0.5}TiO_3$ (BST) / Magnesium oxide (MgO) two-layered electrically tunable band-pass Filters (BPFs) is demonstrated. The devices consist of microstrip, coplanar waveguide (CPW), and conductor-backed coplanar waveguide (CBCPW) structures. These BST thin film band-pass filters have been designed by the 2.5 D field simulator, IE3D, Zeland Inc., and fabricated by thin film process. The simulation results, using the 2-pole microstrip, CPW, and CBCPW band-pass filters, show the center frequencies of 5.89 GHz, 5.88 GHz, and 5.69 GHz, and the corresponding insertion losses are 2.67 dB, 1.14 dB, and 1.60 dB, with 3 %, 9 %, and 7 % bandwidth, respectively. The measurement results show the center frequencies of 6.4 GHz, 6.14 GHz, and 6.04 GHz, and their corresponding insertion losses are 6 dB, 4.41 dB, and 5.41 dB, respectively, without any bias voltage. With the bias voltage of 40 V, the center frequencies for the band-pass filters are measured to be 6.61 GHz, 6.31 GHz, and 6.21 GHz, and their insertion losses are observed to be 7.33 dB, 5.83 dB, and 6.83 dB, respectively. From the experiment, the tuning range for the band-pass filters are determined as about 3 % ~ 8 %.

Design of Distributed Band Pass Filter for 900MHz ZigBee System applications (900MHz ZigBee System 응용 분포소자형 Band Pass Filter 설계)

  • Lee, Joong-Keun;Yoo, Chan-Sei;Kim, Dong-Su;Won, Kwang-Ho;Lee, Woo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.163-166
    • /
    • 2005
  • Multilayer LTCC technology enables RF modules to be reduced dramatically by taking advantage of the three dimension flexibility. Compared to a conventional two dimensional PCB, LTCC allows higher density, reduced size, and lower cost. In this research, BPF based on LTCC for 900MHz ZigBee application was implemented which can replace SAW filter with using the material of the Dupont9599's dielectric constant 7.8. And distributed baud pass filter for 900MHz ZigBee system applications is presented. Using resonator stripline and capacitance, 2nd order band pass filter was designed. Adjusting resonator's length and capacitance is easy to tune at accurate center frequency by shifting band because ZigBee system is using narrow bandwidth, $902MHz^{\sim}928MHz$. Also resonator has no limitation in space, so reducing size is possibile. Designed filter had I.L. 2.8dB at 915MHz and attenuation at 815MHz, 1015MHz was 16dB, 15dB, respectively. Therefore, the sharpe cut-off and good insertion loss for ZigBee system application.

  • PDF

A Low-power High-resolution Band-pass Sigma-delta ADC for Accelerometer Applications

  • Cao, Tianlin;Han, Yan;Zhang, Shifeng;Cheung, Ray C.C.;Chen, Yaya
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.438-445
    • /
    • 2017
  • This paper presents a low-power high-resolution band-pass ${\Sigma}{\Delta}$ ADC for accelerometer applications. The proposed band-pass ${\Sigma}{\Delta}$ ADC consists of a high-performance 6-th order feed-forward ${\Sigma}{\Delta}$ modulator with 1-bit quantization and a low-power, area-efficient digital filter. The ADC is fabricated in 180 nm 1P6M mixed-signal CMOS process with a die area of $5mm^2$. This high-resolution ADC got 90 dB peak signal to noise plus distortion ratio (SNDR) and 96 dB dynamic range (DR) over 4 kHz bandwidth, while the intermediate frequency (IF) is shifting from 100 KHz to 200 KHz. The power dissipation of the chip is 5.6 mW under 1.8 V (digital)/3.3 V (analog) power supply.

A study on the multi-point signal detection, using Passive band-pass filter in FBG Hydrophone (FBG(Fiber Bragg Grating) Hydrophone에서 Passive Band-Pass Filter를 사용한 다중점 신호 검출에 관한 연구)

  • Kim, Kyung-Bok;Kwack, Kea-Dal
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.307-315
    • /
    • 2000
  • To set up the arrays system of FBG(Fiber Bragg Grating) Hydrophone sensor and realize the multi-point signal detection for the wide scope underwater, using WDM(Wavelength Division Multiplexing) method and Passive band-pass filter system, underwater acoustic signal detection of the newly designed two FBG Transducers is successfully experimented. As a result of the experiment, it was possible each signal with different frequent signals is detected for the multi-point up to 1.3KHz in underwater. We can, therefore, prove the possibility on the system design of Hydrophone sensor arrays, using the newly made FBG Transducers.

  • PDF