• Title/Summary/Keyword: Bamboo fiber

Search Result 97, Processing Time 0.029 seconds

Bending Strength of Natural Woven Bamboo Fiber-reinforced Polymer Composites with Manufacturing Factors (직조된 대나무 자연섬유 복합재료의 제조인자에 따른 굽힘강도)

  • Song Jun-Hee;Lim Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.916-922
    • /
    • 2006
  • In recent years there has been a growing interest for the use of natural fibers in composite applications due to their low cost, environmental friendliness, and good mechanical properties. The purpose of this study is to determine the characteristic of bending strength on bamboo fiber reinforced polymer composites. The parameters of RTM process depend on the weight ratio of bamboo fiber and resin, the number of bamboo ply and amount of hardening agent. Mechanical properties was investigated for each process factor of polymer composites. Test result shows that bending strength was a maximum(approximately 85MPa) value when composite thickness was 6mm and weight ratio of resin was 13%.

Comparative Study on Mechanical Properties of Sonicated Bamboo and Kenaf Fiber Composite (초음파 처리된 대나무섬유와 케냐프섬유 복합재의 기계적 특성 비교 연구)

  • Lee, Su Kyoung;Park, Eun Young;Park, Tae Sung;An, Seung Kook
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.274-280
    • /
    • 2020
  • This study compared the mechanical properties of bamboo fiber composites and kenaf fiber composites through physical treatment (ultrasonic treatment). Kenaf, a composite of PP reinforced with bamboo fiber, was made using injection molding technology. PP was used as a binder and the ultrasonic treatment time of bamboo and kenaf was increased by 30 minutes to compare and study various mechanical properties of bamboo and kenaf composites through physical treatment. Interfacial properties such as internal cracks and internal structure of the wave cross section were confirmed using a scanning electron microscope (SEM). As a result of the ultrasonic treatment, most of the characteristics were fragile as the ultrasonic treatment time was increased, and it was confirmed that the natural characteristics of the twisted fibers had a great influence on the characteristics of the composite material.

Effect of Bamboo Fiber Grinding on the Mechanical, Thermal, Impact, and Water Absorption Properties of Bamboo/Poly(lactic acid) Biocomposites (대나무/폴리락틱산 바이오복합재료의 기계적, 열적, 충격 및 수분흡수 특성에 미치는 대나무섬유 분쇄의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.121-130
    • /
    • 2012
  • In the present study, bamboo/PLA biocomposites through injection molding process using extruded bamboo/PLA pellets with the fiber contents of 30, 40, and 50 wt% according to the presence and absence of bamboo fiber grinding, respectively, were fabricated and their mechanical, thermal, impact, and water absorption properties were explored. Compared to neat PLA, the flexural modulus, tensile modulus, storage modulus and impact strength of bamboo/PLA biocomposites were considerably increased. In particular, the moduli were further increased by introducing the ground bamboo fibers. In addition, use of the ground bamboo fibers was effective to enhance the long-term water resistance of the biocomposites. The heat treatment temperature of neat PLA was improved by 16% by incorporating the bamboo fibers and the fiber grinding effect was slight. The incorporation of the ground bamboo fibers to PLA did not influence the tensile strength and impact toughness of bamboo/PLA biocomposites.

Water Treatment Effect of Bamboo Fiber on the Mechanical Properties, Impact Strength, and Heat Deflection Temperature of Bamboo Fiber/PLA Biocomposites (대나무섬유/PLA 바이오복합재료의 기계적 특성, 충격강도 및 열변형온도에 미치는 대나무섬유 수처리의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.96-103
    • /
    • 2016
  • In this work, pellets consisting of cellulose-based natural fiber bamboo and poly(lactic acid) (PLA) was prepared by extrusion process and then bamboo fiber/PLA biocomposites with various fiber contents were produced by injection molding process. The water treatment effect of bamboo fibers on the flexural, tensile, and impact properties and heat deflection temperature of the biocomposites were investigated. The thermal stability of bamboo and the flexural properties, tensile modulus, and impact strength depended on the presence and absence of water treatment as well as on the fiber content, whereas the heat deflection temperature are influenced mainly by water treatment. The increase of the mechanical and impact properties of biocomposites is ascribed to the improvement of the interfacial adhesion between the bamboo fibers and the PLA matrix by the water treatment. The result suggests that the pre-treatment of natural fibers by using water, which is environment-friendly and labor-friendly, may contribute to enhancing the performance of biocomposites.

Elucidating soda and soda-anthraquinone pulping characteristics of Korean bamboo species (국내산 주요 죽종의 소다 및 소다-안트라퀴논 펄핑 특성 비교)

  • Lee, Kyu-Seong;Song, Woo-Yong;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.44-50
    • /
    • 2016
  • As a raw material for pulp and paper industry, Moso bamboo, Timber bamboo and Henon bamboo pulps were prepared by soda or soda-anthraquinone(Soda-AQ) pulping process. Soda-AQ pulp yields was higher in Henon bamboo (43.2%) than in Moso bamboo or Timber bamboo (32.7-39.2%), but quite lower than hardwood species. In Kappa number comparison, Henon bamboo pulp showed lower (16.6) with 50 min cooking to $170^{\circ}C$ than that of Moso bamboo (22.8) and Timber bamboo (18.9) with 90 min cooking to $170^{\circ}C$. Fiber length of Timber bamboo soda pulp had higher (1.46 mm) than that of Moso bamboo or Henon bamboo (1.18-1.36 mm). All three bamboo pulps showed longer average fiber length than commercial hardwood pulp. With higher pulp yield and lower Kappa number, Henon bamboo is better raw material for pulp than Moso bamboo and Timber bamboo.

Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joints (접착제 접합된 자연섬유강화 복합재료의 파괴 강도특성에 미치는 섬유방향의 영향)

  • Im, Jae-Gyu;Yun, Ho-Cheol;Lee, Sang-Yong;Renliang, Wang
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.94-96
    • /
    • 2005
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tensile and peel tests were carried out on specimen manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the failure strength of adhesive bonded joints using hybrid stacked composites with a polyester and bamboo natural fiber layer adjacent to the fiber orientation. From results, the load directional orientation, small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. and these characters are have a great influence on fracture strength and failure shape of adhesive bonded joints using hybrid stacked composites in the difference of fiber orientation.

  • PDF

Effect of Vascular Bundles and Fiber Sheaths in Nodes and Internodes of Gigantochloa apus Bamboo Strips on Tensile Strength

  • Atmawi DARWIS;Anne HADIYANE;Endah SULISTYAWATI;Ihak SUMARDI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.309-319
    • /
    • 2023
  • Bamboo culm is in the form of a tube/pipe, composed of internodes which are bounded by a partition/diaphragm (node). Anatomically, bamboo is composed of vascular bundles and parenchyma ground tissue. One of the constituents of vascular bundles is fibers that are grouped to form a fiber sheath. The anatomical structure of the nodes and internodes is thought to influence the strength of bamboo strips, including tensile strength. This study aimed to determine the characteristics of vascular bundles (distribution and fiber percentage) and their effects on the density and tensile strength of Gigantochloa apus bamboo strips with and without nodes. The bamboo culms were divided into three parts (outer, middle, and inner) along the radial direction. The results showed that the distribution of vascular bundles and percentage of fiber sheaths decreased significantly from the outer to the inner layer. This also had a significantly decreased density and tensile strength. Furthermore, the number of vascular bundles (in the transverse plane) was greater in the internodes than in the nodes. Anatomically, the orientation of the vascular bundles at irregular nodes is observed in the radial and tangential planes, where the direction is not only in the axial direction, but also in the radial and tangential directions. This caused the tensile strength of the G. apus bamboo strips to be lower at the nodes than at the internodes.

Dyeability and Functionality of Bamboo Extracts (Part II) -Dyeing Properties of Protein Fiber- (대나무 추출물의 염색성과 기능성 (제2보) -단백질섬유에 대한 염색성-)

  • Jung, Go-Eun;Lee, Jung-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.3
    • /
    • pp.336-346
    • /
    • 2011
  • Dyeing properties of protein fiber with bamboo colorants were studied by investigating the effect of dyeing conditions such as dye concentration, dyeing temperatures, times on dye uptakes, effect of mordants, and color change. The various colorfastness of dyed fabrics were evaluated for practical use. In addition, the antimicrobial ability, ultraviolet-cut ability, and deodorant ability were estimated. The dye uptake increased as the dyeing concentration increased. Bamboo colorants showed relatively good affinity to protein fiber and produced a yellow color. Dye uptake increased as the dyeing time and temperature increased. Post-mordanting was more effective than pre-mordanting. Mordants, Fe and N.Fe, were effective for increasing dye uptake. The color of fabric mordanted with Cu and N.Cu changed to GY. Colorfastness of dyed fabrics showed a relatively good rating, and mordanting had no significant effect on colorfastness. Dyed silk fabric showed very good antimicrobial abilities of 99.9%. Also, ultraviolet-cut ability and deodorant ability were improved in silk fabric dyed with bamboo extracts.

A Study of the Cationization of Bamboo-cotton Blended Fabric (대나무-면 복합직물의 양이온화에 관한 연구)

  • Noh, Young-Ju;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.2
    • /
    • pp.260-266
    • /
    • 2022
  • Cellulose fiber is a material used in various fields. It is the most used type of fiber because of its excellent hygroscopicity and dyeability. Recently, as natural fiber materials have been highlighted due to the influence of eco-friendliness and well-being, bamboo fiber has become a commonly used eco-friendly fiber. Cellulose fibers are part of the -OH hydroxyl group, which means they are more chemically reactive than synthetic fibers. In this study, the cationization properties of bamboo-cotton blended fabrics cationized using CHPTAC (3-chloro-2-hydroxypropyl trimethyl ammonium chloride) in the PDC (padding-drying-curing) method were investigated. Various characteristics according to cationization were studied through elemental analysis, FT-IR (fourier-transform infrared spectroscopy) analysis, X-ray diffraction analysis, TGA (thermogravimetric) analysis, and SEM (scanning electron microscope) analysis. The nitrogen content of the cationized bamboo-cotton blended fabric increased with an increase in the concentration of the cationizing agent CHPTAC, and it was seen to be highly bound to cellulose molecules. As a result of the FT-IR analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics were seen to be typical cellulose. As a result of the X-ray diffraction analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics showed typical cellulose I structures. As a result of the X-ray diffraction analysis, both 100% pure cotton fabrics and CHPTAC-0 and CHPTAC-150 fabrics showed typical cellulose I structures. As the cationization progressed, micropores appeared on the surface of the blended fabric.

Dyeing Property of Bamboo Leaves Extract on Hemp and Ramie Fiber (대나무잎 추출물에 의한 삼베와 모시섬유의 염색성)

  • Min, Kyung-Hae
    • Fashion & Textile Research Journal
    • /
    • v.13 no.3
    • /
    • pp.438-444
    • /
    • 2011
  • Bamboo leaves, as natural dye provide unartificial fresh green, are known for expert property at anti-bacterial, anti-aging, anti-oxidation, skin whitening, moisturizing, peeling of horny, deodorizing and some skin disease like as eczema and inflammation without any allergic response. Also, It is quite common to obtain bamboo leaves from our surrounding but most of them were not in use. On purpose of development the way of recycle with common material to dye, bamboo leaves were used to dye on ramie fiber which is valuable for both of apparel and industrial field and investigated their dyeing property. Using extract from bamboo leaves, dyeing property was examined with dyeability, colorimetric property, light fastness and wash fastness under different conditions by extract density, dyeing time, dyeing method and mordants. As results, dyeing was generally colored in yellowish, K/S Value was shown more higher on hemp fiber than ramie. The most optimum dyeing condition was investigated on pre-mordant treatment, dyeing temperature $60^{\circ}C$, dyeing time 30min and extract density 400%. On the treatment with mordant(Al, Fe, Cu), dyebility on both of hemp and ramie fiber were increased by mordant. Especially with Copper(Cu) as mordant, dyebility was highly increased than any other mordants and dyeings showed in deep color. Also on the fastness test which is the most important to natural dyeing, wash-fastness showed good performance with 4-5 grade but light-fastness was above 4 grade on both of hemp and ramie fiber, lower than wash-fastness overall.