• Title/Summary/Keyword: Bamboo Activated Carbon

Search Result 19, Processing Time 0.026 seconds

Preparation and Characterization of Bamboo-based Activated Carbon by Phosphoric Acid and Steam Activation (인산 및 수증기 활성화에 의한 대나무 활성탄 제조 및 특성 연구)

  • Park, Jeong-Woo;Ly, Hoang Vu;Oh, Changho;Kim, Seung-Soo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • Bamboo is an evergreen perennial plant, and it is known as one of the most productive and fastest-growing plants in the world. It grows quickly in moderate climates with only moderate water and fertilizer. Traditionally in Asia, bamboo is used for building materials, as a food source, and as versatile raw materials. Bamboo as a biomass feedstock can be transformed to prepare activated carbon using the thermal treatment of pyrolysis. The effect of process variables such as carbonization temperature, activation temperature, activation time, the amount of steam, and the mixing ratio of phosphoric acid and bamboo were systematically investigated to optimize the preparation conditions. Steam activation was proceeded after carbonization with a vapor flow rate of $0.8{\sim}1.8mL-H_2O\;g-char^{-1}\;h^{-1}$ and activation time of 1 ~ 3 h at $700{\sim}900^{\circ}C$. Carbon yield and surface area reached 2.04 ~ 20.59 wt% and $499.17{\sim}1074.04m^2\;g^{-1}$, respectively, with a steam flow rate of $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$ for 2 h. Also, the carbon yield and surface area were 24.67 wt% and $1389.59m^2\;g^{-1}$, respectively, when the bamboo and phosphoric acid were mixed in a 1:1 weight ratio ($700^{\circ}C$, 2 h, $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$). The adsorption of methylene blue into the bamboo activated carbon was studied based on pseudo first order and second order kinetics models. The adsorption kinetics were found to follow the pseudo second order model, which is governed by chemisorption.

Characteristics of Physical and Adsorption of Korean Traditional Charcoal (우리나라 전통 숯의 물리.화학적 특성)

  • Kim, Joon-Tae;Kim, Sun-Hwa;Kim, Hae-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.77-86
    • /
    • 2006
  • The water purification was very important in Korea which has not sufficient water resource and while adsorption method among the various methods to eliminate the water pollutants has been widely used by activated carbon. This study was conducted the basic experiment for hall distribution, pH, conductivity, electronic microscope, cation exchange and inorganic materials the adsorption capacity of Korean traditional charcoal which has similar characteristics to activated carbon of organic pollutants. As a result of observing Korean traditional charcoal with electronic microscope, it was found that it has porous structure, oak charcoal has circular structure, pine charcoal has square structure and bamboo charcoal has hexagonal structure, which has high void fraction per unit area because of its thin cell wall structure. As a result of experimenting hall distribution, hall distribution of bamboo high temperature charcoal is high as 0.269cc/g and has the greatest inorganic contents and cation exchange capacity(CEC) which are the important factor of chemical adsorption.

Effective Biodegradation of Polyaromatic Hydrocarbons Through Pretreatment Using $TiO_2$-Coated Bamboo Activated Carbon and UV ($TiO_2$로 코팅된 대나무숯 및 UV의 전처리를 통한 다환방향족탄화수소의 효율적 생분해)

  • Ekpeghere, Kalu I.;Koo, Jin-Heui;Kim, Jong-Hyang;Lee, Byeong-Woo;Yi, Sam-Nyung;Kim, Yun-Hae;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • $TiO_2$-coated bamboo activated carbon has been prepared and utilized under UV irradiation as a pretreatment method for an effective biodegradation of the recalcitrant polyaromatic hydrocarbons (PAHs). The anatase $TiO_2$ was successfully coated on the bamboo activated carbon (AC) and it showed the highest photoactivity against methylene blue. In the absence of the PAHs-degrading bacteria PAHs having low molecular weight (i.e., naphthalene, acenaphthylene, acenaphthene, and fluorene) were degraded by 9.8, 76.2, 74.1, and 40.5%, respectively. Higher molecular weight PAHs, however, maintained high residual concentrations of PAHs (400-1,000 ${\mu}g$/L) after the same treatment. On the other hand, the overall concentrations of PAHs became lower than 340 ${\mu}g$/L when the pretreated PAHs were subjected to biodegradation by a PAH-degrading consortium for a week. Herein, phenanthrene, anthracene, fluoranthene, and pyrene were removed by 29.3, 61.4, 27.0, and 44.3%, respectively, indicating the facilitated potential biodegradation of PAHs. Activated carbon coated with $TiO_2$ appeared to inhibit growth of PAH degraders on the surface of AC, indicating planktonic degraders were dominantly involved in the PAH biodegradation in presence of the $TiO_2$-coated bamboo AC. It was proposed that an effective remediation technology for the recalcitrant PAHs could be developed when an optimum pretreatment process is further established.

Organic Wastewater Treatment by using Bamboo Charcoal (대나무 고온탄을 이용한 유기성 폐수처리)

  • Kim, Sun-Hwa;Kim, Hae-Jin;Kim, Joon-Tae
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.1 s.63
    • /
    • pp.17-27
    • /
    • 2007
  • This study was conducted the adsorption experiment way of organic wastewater (BOD, COD, TOC, T-N, T-P) by changing the carbonization temperature and the size of adsorbent to examine the adsorption capacity of Korean traditional charcoal which has similar characteristics to activated carbon of organic pollutants. Also, it was performed the basic experiment for pH and inorganic materials. As a result of observing Korean traditional charcoal with has the greatest inorganic contents which are the important factor of chemical adsorption. As the carbonization temperature was better high temperature charcoal than law temperature charcoal to adsorption capacity of pollutant and as the particle was minute (D size : $3.35mm{\sim}2.0mm$), it was most effective. The result of adsorption experiment of organic wastewater show that the elimination ratio of pollutants by bamboo high temperature charcoal was found as BOD(82.1%), COD(91.7%), TOC(52.4%), T-N(66.6%), T-P(83.2%) and it has most excellent adsorption capacity of organic pollutants.

Measurement of Adsorption Characteristic Using a Quartz Crystal Resonator (수정진동자를 이용한 흡착특성의 측정)

  • Kim, Byoung Chul;Sung, Ick Gi;Yamamoto, Takuji;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.368-372
    • /
    • 2009
  • A technique to measure the adsorption characteristic of surface area and pore size distribution is proposed and its performance is examined. While the existing equipment utilizes liquid nitrogen, the proposed uses carbon dioxide at the room temperature leading to the small measuring device with easy operation and short measurement time. The performance of the device has been examined with micro-particle carbon cryogel and bamboo activated carbon. The results from the proposed device compared with those of the adsorption apparatus indicate that the measurement of meso-porous material is comparable but micro-porous material gives some error.

Characteristics of Volatile Compound Adsorption from Alcoholic Model Solution onto Various Activated Carbons (알코올모델용액을 이용한 여러 종류 활성탄의 휘발성화합물 흡착특성)

  • Park, Seung-Kook;Lee, Myung-Soo;Kim, Byung-Ho;Kim, Dae-Ok
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • Ten commercial activated carbons (ACs) prepared from four different sources (bamboo, wood, peat, and coal) were evaluated for their adsorptive efficiency of six volatile compounds (isoamyl alcohol, hexanal, furfural, ethyl lactate, ethyl octanoate, 2-phenyl ethanol) which were dissolved in a 30% alcoholic model solution. These six volatile compounds are frequently found in alcoholic beverages and possibly contribute to physiological hangover due to their high concentrations. They are also generally regarded as off-flavor compounds at certain levels in alcoholic beverages such as whisky and vodka. Two hundred mL of 30% alcoholic solutions containing these six volatile compounds were treated with 0.2 g of ACs while stirring for 16 hr; the treated solutions were then measured for their adsorptive efficiencies (or removal efficiencies) by gas chromatographic analysis using two different sampling methods (direct liquid injection and headspace-solid phase microextraction). The adsorptive efficiencies of the ACs varied depending on the identity of the volatile compounds and the source material used for making the ACs. Ethyl octanoate, 2-phenyl ethanol, and hexanal were removed at high efficiencies (34-100%), whereas isoamyl alcohol, ethyl lactate, and furfural were removed at low efficiencies (5-13%). AC prepared from bamboo showed a high removal efficiency for isoamyl alcohol, aldehydes (hexanal and furfural), and 2-phenyl ethanol; these major fusel oils have been implicated as congeners responsible for alcohol hangover.

Development of On-Line Measurement System for Adsorption Process (흡착공정용 온라인 측정시스템의 개발)

  • Kim, Byoung Chul;Lee, Ki Sung;Yamamoto, Takuji;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.321-326
    • /
    • 2009
  • A simple measuring device is proposed, and its performance is examined in an adsorption process separating a gas mixture. The sensor is made of a quartz crystal resonator and solid adsorbent to detect the target component. Micro-particle carbon cryogel(MCC) is utilized as the adsorbent, and the gas mixture of air and i-butane are separated in a column containing bamboo activated carbon. Two devices are placed at the inlet and outlet of the column. The measurements are compared with those of GC outcome to prove the measurements are effective. The experimentally proved system is simple and capable to be implemented in an in-line system with on-line measurement.

Synthesis of TiO2/active carbon composites via hydrothermal process and their photocatalytic performance (수열합성법에 의한 TiO2/active carbon 복합체의 제조 및 광촉매특성)

  • Kim, Dong Jin;Lee, Jin Hee;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.241-245
    • /
    • 2013
  • Granular bamboo-derived active carbons (AC) were impregnated (or coated) with $TiO_2$ nano crystalline powders. The photocatalytic activity of the $TiO_2$-impregnated active carbons ($TiO_2$/AC) were determined on the basis of the degradation rate of methylene-blue aqueous solution under UV irradiation. The active compounds of $TiO_2$ were impregnated onto the AC under moderate hydrothermal conditions (${\leq}200^{\circ}C$, pH 11). The mean size of $TiO_2$ particles calculated from BET surface area were found to be as 50 nm. The $TiO_2$ precipitates were coated on the cavities or pores on the surfaces of highly activated carbons. Since the hydrothermal process led to a lowering of the on-set temperature of the anatase-to-rutile transition of $TiO_2$ as low as $200^{\circ}C$, $TiO_2$ crystallites of a pure anatase or a mixed form with rutile were successfully coated on the AC depending on the synthesis temperatures.