• Title/Summary/Keyword: Ballscrew

Search Result 55, Processing Time 0.029 seconds

A Study on the Ultraprecision Positioning Characteristic of Aerostatic Stage (공기정압 stage의 초정밀위치결정을 위한 기본특성)

  • 황주호;김중천;이재형;박천홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.175-178
    • /
    • 2000
  • An aerostatic stage has frictionless behavior, so it has a advantage of investigation into positioning characteristics. A one-dimensional aemstatic ceramic stage with ballscrew driven and laser scale feedback system is manufactured. aiming at investigating positioning characteristic of aerostatic stage, especially position error and repeatability, we analyze positioning behavior with other factors such as angular error, temperature. Experimemal results show that the aerostatic stage has a l0nm micro step response. Comparing experimental results and calculated abbe's error, we confirm that mean of position error is owing to angular error. And, also we confirm the temperature is dominant factor of repeatability in ten nm order.

  • PDF

Development of a Linear Motor Dynamometer for Positioning Control Performance Test (Linear모터의 위치 제어 성능 시험을 위한 Dynamometer 개발)

  • Roh Chang-Yul;Rho Myung-Hwan;Kim Ju-Kyung;Park Jong-Jin;Lee Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.609-614
    • /
    • 2006
  • Recently linear motor has been used mainly for high speed feeding performance of machine tools. The advantages of linear motor are not only high speed but high accuracy, because it is not required the coupling and ballscrew for converting rotary to liner motion. Before applying in different moving system, the dynamometer is necessary to test the performance. In Korea, the linear motor is producing in a couple of company However, the liner motor dynamometer is not commercialized yet, like as rotary motor dynamometer. In this paper, a linear motor dynamometer is designed and manufactured using a MR damper. The dynamometer system developed in this study could be used for testing the positioning accuracy fur different loading conditions, traction forces, dynamic performance and so on.

Research of the cutting force measuring system using feed drive system built in load cell (이송계에 부착시킨 로드셀을 이용한 절삭력 측정시스템에 관한 연구)

  • 강은구;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.595-598
    • /
    • 2000
  • This paper presents new cutting force measuring system for milling process. Usually, tool dynamometer is the most appropriate measuring tool in an analysis of cutting mechanism. High price and limited space, however, make it difficult to be in-situ system for controllable milling process. Although an alternative using AC current of servomotor has been suggested, it is unsuitable for cutting force control because of low bandwidth and noise. We suggest new cutting force measuring system, using two load cell placed between moving table and nut of ballscrew, and modelled on the system statically and dynamically. And to verify the accuracy of the proposed system, a series of carefully conducted experiments were carried out. Experiment results show that models are in reasonably good agreement with the experiment data.

  • PDF

A Study on Structure of Support Ball Screw and Arrangement of Combined Bearing (볼나사 지지 구조와 베어링 조합 배열에 관한 연구)

  • 홍성오;정성택;조규재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.51-56
    • /
    • 2002
  • In order to achieve high precision machine tools, Performance enhancement of feed drive systems is required. One of the important technical issues is how to decrease thermal expansion of ball screw in proportion to the increase of machining speed. When measuring force of stretch of ball screw, since not only actual expansion and the value of bending have to be considered, it is impossible to define the exact value of expansion. In addition, support bearings of ball screw gain considerable force in axial direction. It also generates thermal expansion on the ball screw, and deteriorates the performances of the hearings. In conclusion, it is impossible to give the pretension enough to absorb all the elongation due to thermal expansion generated during machine is running. If given bed column and saddle are all bent to chance machine accuracy, and the support bearings of ball screw is damaged.

A Study on Characteristics of Feed Drive System using High Speed Ballscrew (고속볼스크류를 사용한 이송계 특성에 관한 연구)

  • 박성호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.279-284
    • /
    • 2000
  • It can be acquired the high effective productivity through of high speed, precision of machine tools, and then, machine tools will be got a competitive power. Industrially advanced countries already developed that the high speed feed is 60m/min using the high speed ball screw. Also, a lot of problems have happened the feed drive system. It is necessary to study about the character of positioning accuracy, heat generation and high speed control for feed drive system of high speed. in this study, we make use of the feed drive system with a high lead ball screw. We'll develop the feed drive system at the speed of 60m/min. Using the design of the mechanical element and the high speed control, the basic design concept can be established. After manufacturing one-shaft feed drive system and then conducting the performance test, It'll be analyzed properties of the high speed feed drive system.

  • PDF

The End-Point Position Control of a Translational Flexible Arm by Inverse Dynamics (역동역학에 의한 병진운동 탄성 Arm 선단의 위치제어)

  • Lee, Seong-Cheol;Bang, Du-Yeol;S. Chonan;H. Inooka
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.136-146
    • /
    • 1992
  • This paper provides the end-point positioning of a single-link flexible robot arm by inverse dynamics. The system is composed of a flexible arm, the mobile ballscrew stage as an arm base, a DC servomotor as an actuator, and a computer. Actuator voltages required for the model of a flexible arm to follow a given tip trajectory are formulated on the basis of the Bermoullie-Euler beam theory and solved by applying the Laplace transform method, and computed by the numerical inversion method proposed by Weeks. The mobile stage as the arm base is shifted so that the end-point follows the desired trajectories. Then the trajectory of end-point is measured by the laser displacement sensor. Here, two kinds of functions are chosen for the given tip trajectories. One is what is called the bang-bang acceleration profile and the other is the Gaussian velocity profile.

  • PDF

A Study on the Evalution of Rotational and Linear Movement Error in Thread Grinder (나사연삭기 회전전달 및 테이블 이송오차 평가에 관한 연구)

  • Park, Cheol-U;Yoon, Yeong-Sik;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 1996
  • It is one of the important causes that the precision of the thread grinder decide the machining errors of the ball screw. The approach described in this study demonstrates how the dominant causes of the inaccuracies in thread grinding system can be determined. To evaluate the machining error of thread grinder, rotary encoder is allocated to spindle shaft and master screw for measuring the rotational transfer error between spindle shaft and master screw and the laser measuring system is used for checking the movement error.

  • PDF

Motion Error Compensation Method for Hydrostatic Tables Using Actively Controlled Capillaries

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • To compensate for the motion errors in hydrostatic tables, a method to actively control the clearance of a bearing corresponding to the amount of error using actively controlled capillaries is introduced in this paper. The design method for an actively controlled capillary that considers the output rate of a piezo actuator and the amount of error that must be corrected is described. The basic characteristics of such a system were tested, such as the maximum controllable range of the error, micro-step response, and available dynamic bandwidth when the capillary was installed in a hydrostatic table. The tests demonstrated that the maximum controllable range was $2.4\;{\mu}m$, the resolution was 27 nm, and the frequency bandwidth was 5.5 Hz. Simultaneous compensation of the linear and angular motion errors using two actively controlled capillaries was also performed for a hydrostatic table driven by a ballscrew and a DC servomotor. An iterative compensation method was applied to improve the compensation characteristics. Experimental results showed that the linear and angular motion errors were improved to $0.12{\mu}m$ and 0.20 arcsec, which were about $1/15^{th}$ and $1/6^{th}$ of the initial motion errors, respectively. These results confirmed that the proposed compensation method improves the motion accuracy of hydrostatic tables very effectively.

Modeling and Dynamic Analysis of Electro-mechanical System in Machine Tools(2$^{nd}$ Report) - Modeling and Dynamic Analysis of Feed Drive System - (공작기계 시스템의 모델링과 동적특성 분석 (제2보) - 이송계의 모델링과 동적특성 분석 -)

  • Park, Yong-Hwan;Shin, Heung-Chul;Moon, Hee-Sung;Choe, Song-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.218-224
    • /
    • 1999
  • In the feed drive systems of machine tools that consist of many mechanical components such as motor, coupling, ballscrew, nut or table, a torsional vibration is often generated because of its elastic elements in torque transmission. Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed system. In this paper, the mathematical model of a feed drive system was developed and its mechanical characteristics were analyzed on the basis of the proposed model. The design concepts of speed control loop to stabilize a feed drive system were also proposed.

  • PDF

Surface Finishing of Ballscrew by Abrasive Wheel Brush (연마재함유 휠브러쉬에 의한 볼스크류 연마기술)

  • 이응숙;김재구;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1049-1052
    • /
    • 1997
  • The pupose of this study on the surface finishing is to examine the performance of brushing as a means of reducing the surface roughness of the precision theaded shafts in ball screw assemblies. Ball screws provide superior performance compared to other types of screw feeds in terms of static and dynamic rolling resistance,backlash,and wear characteristics. The Reduction of the surface roughness of the lead shaft in ball screw assembiles is essential for precision movement,high speed/low noise tracel, and for low wear/long life. To reduce machine dependent errors that would influence the surface roughness compared with other lapping or polishing techniques,experiments will be performed using special wire brushes to polish precision ground shafts. The best results were obtained using the Al /sab 2/O /sab3/ brushes, with the Al /sab 2/O /sab3/ #500 grit brush producing a surface finish of approximately 0.7 .mu.m, and the Al /sab 2/O /sab3/ #600 grit producing a surface finish of approximately 0.8 .mu.m. Both of these results were produced at the highest wheel polishing speed of 3520 rpm. The SiC #500 brush produced a surface roughness of approximately 1 .mu.m at 3520 rpm.

  • PDF