• Title/Summary/Keyword: Ballistic Trajectory

Search Result 50, Processing Time 0.022 seconds

Development of Augmentation Method of Ballistic Missile Trajectory using Variational Autoencoder (변이형 오토인코더를 이용한 탄도미사일 궤적 증강기법 개발)

  • Dong Kyu Lee;Dong Wg Hong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.145-156
    • /
    • 2023
  • Trajectory of ballistic missile is defined by inherent flight dynamics, which decided range and maneuvering characteristics. It is crucial to predict range and maneuvering characteristics of ballistic missile in KAMD (Korea Air and Missile Defense) to minimize damage due to ballistic missile attacks, Nowadays, needs for applying AI(Artificial Intelligence) technologies are increasing due to rapid developments of DNN(Deep Neural Networks) technologies. To apply these DNN technologies amount of data are required for superviesed learning, but trajectory data of ballistic missiles is limited because of security issues. Trajectory data could be considered as multivariate time series including many variables. And augmentation in time series data is a developing area of research. In this paper, we tried to augment trajectory data of ballistic missiles using recently developed methods. We used TimeVAE(Time Variational AutoEncoder) method and TimeGAN(Time Generative Adversarial Networks) to synthesize missile trajectory data. We also compare the results of two methods and analyse for future works.

A Study on the Flight Trajectory Prediction Method of Ballistic Missiles - BM type by Adjusting the Angle of a Flight Path and a Range - (탄도미사일의 비행궤적 예측 방법 연구 - 탄종별 비행경로각과 사거리를 중심으로 -)

  • Yoo, Byeong Chun;Kim, Ju Hyun;Kwon, Yong Soo;Choi, Bong Wan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • The characteristics of ballistic missiles are changing rapidly but studies have mostly focused on fragmentary flight trajectory analysis estimating the changing characteristics of some types, while there is a lack of research on comprehensive and efficient ballistic search, detection and prediction for missiles including the new types that have been gaining attention lately. This paper analyzes the flight trajectory characteristics of ballistic missiles at various ranges considering flight path angle adjustment, specific impulse and drag force with altitude based on the optimized equations of motion reflecting the parameters of North Korea's general and new types of ballistic missiles. The flight trajectory characteristics of representative ranges for each ballistic missile were analyzed by adjusting the flight path angle in the minimum energy method, lofted method, and depressed method. In addition, High value target can attacked by ballistic missiles considering flight path angle adjustment at various points. It's expected to be used to Threat Evaluation and Weapon Allocation, and deployment of defense systems by interpreting the analysis of the latest Iskander-class ballistic missiles and the new multiple rocket launcher.

Analysis of Flight Trajectory Characteristics of the MRBM by Adjusting the Angle of a Flight Path (비행경로각 조정에 의한 중거리 탄도미사일의 비행궤적 특성 해석)

  • Kim, Jiwon;Kwon, Yong Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.173-180
    • /
    • 2015
  • North Korea has developed ballistic missiles over the past 30 years. It is believed that they have a variety of ballistic missiles more than 1,000. Because these ballistic missiles threaten South Korea directly, accurate analysis of them is essential. Flight trajectories of the ballistic missiles are generally changed by means of adjusting payload weight, Isp, flight path angle, and cut-off time. The flight path angle is widely used to control the missile range. However it is difficult to predict the missile trajectory exactly in real operational environment because the missile could be launched according to its intention and purpose. This work analyzed the 1,000 km range MRBM's trajectory characteristics from adjusting flight path angle which is depressed as well as lofted method. The analysis of missile trajectory characteristics is based on the simulation of the missile trajectory model developed by KNDU research team.

A Study on Determination of Motor Data of a Base-Bleed Projectile based on Standard Ballistic Model (표준 탄도모델 기반 항력감소탄의 모터 자료 결정에 관한 연구)

  • Yongin Park;Chihun Lee;Youngsung Ko
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.31-42
    • /
    • 2024
  • In this study, the methodology of determination of base bleed motor data for base bleed projectile based on the NATO standard trajectory model, especially STANAG 4355 Method 2 were presented. Ground combustion experiments and aerodynamic performance firing tests were conducted to determine the drag reduction motor data of the base bleed projectile and this data was described based on the NATO standard ballistic model. The derived drag reduction motor data were input into the ballistic equations to complete the ballistic model and it was confirmed that the calculated predicted trajectory from the ballistic model matched well with the measured trajectory from the aerodynamic performance firing tests.

Analysis of Flight Trajectory Characteristics of Ballistic Missiles Considering Effects of Drag Forces (항력을 고려한 탄도미사일 비행궤적 특성 해석)

  • Kim, Jiwon;Kwon, Yong Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.2
    • /
    • pp.134-140
    • /
    • 2016
  • This paper analyzed flight trajectory characteristics of ballistic missiles considering effects of drag forces. It is difficult to intercept ballistic missiles which fly over atmosphere with supersonic speeds and small radar cross section (RCS). In particular, the velocities in the phases of boost and terminal are changed significantly due to the steep variation of the drag force. Therefore, in order to build up a successful ballistic missile defense systems, the effects of the drag forces should be considered in the analysis of ballistic missile trajectory characteristics. In this point of view, this work analyzed the effects of drag forces and derived the flight trajectory characteristics of Scud B, C and Nodong missiles. Model of the ballistic missile flight trajectory is considered the effects of Coriolis and centrifugal forces, and specifications of the missiles are open sources.

Prediction of Possible Intercept Time by Considering Flight Trajectory of Nodong Missile

  • Lee, Kyounghaing;Oh, Kyunngwon
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.14-21
    • /
    • 2016
  • This paper presents research on predicting the possible intercept time for a Nodong missile based on its flight trajectory. North Korea possesses ballistic missiles of various ranges, and nuclear warhead miniaturization tests and ballistic missile launch tests conducted last year and in previous years have made these missiles into a serious security threat for the international community. With North Korea's current miniaturization skills, the range of the nuclear capable Nodong missiles can be adjusted according to their use goals and operating environment by using a variety of adjustment methods such as payload, fuel mass, Isp, loft angle, cut-off, etc., and therefore precise flight trajectory prediction is difficult. In this regards, this research performs model simulations of the flight trajectory of North Korea's domestically developed Nodong missiles and uses these as a basis for predicting the possible intercept times for major ballistic missile defense systems such as PAC-3, THAAD, and SM-3.

Ballistic Missile Tracking using Unscented Kalman Filter (Unscented Kalman Filter를 이용한 탄도 미사일 추적)

  • Park, Sang-Hyuk;Yun, Joong-Sup;Ryoo, Chang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.898-903
    • /
    • 2008
  • In most cases, the trajectory of a ballistic missile is well explained by the Kepler's laws. It implies that the remaining trajectory of the ballistic missile including its final destination can be easily predicted if the position and velocity vector of the ballistic missile at any point on its path can be exactly known. Hence, an effective tracking algorithm based on an exact radar measurement model is very important for developing Ballistic Missile Defense(BMD) system. In this paper, we address to design a nonlinear filter, Unscented Kalman Filter(UKF), to track the ballistic missile.

Numerical Ballistic Modeling in Game Engines

  • YoungBo Go;YunJeong Kang
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • To improve the overall performance and realism of your game, it is important to calculate the trajectory of a projectile accurately and quickly. One way to increase realism is to use a ballistic model that takes into account factors such as air resistance, density, and wind when calculating a projectile's trajectory. However, the more these factors are taken into account, the more computationally time-consuming and expensive it becomes, creating a trade-off between overall performance and efficiency. Therefore, we present an optimal solution to find a balance between ballistic model accuracy and computation time. We perform ballistic calculations using numerical methods such as Euler, Velocity Verlet, RK2, RK4, and Akima interpolation, and measure and compare the computation time, memory usage (RSS, Resident Set Size), and accuracy of each method. We show developers how to implement more accurate and efficient ballistic models and help them choose the right computational method for their numerical applications.

Analysis of the Flight Trajectory Characteristics of Ballistic Missiles (탄도미사일의 비행궤적 특성 해석)

  • Kwon, Yong-Soo;Choi, Bong-Suk
    • Journal of the military operations research society of Korea
    • /
    • v.32 no.1
    • /
    • pp.176-187
    • /
    • 2006
  • It is difficult to estimate missile flight trajectory since a ballistic missile velocity is highly fast and has inherent behavior such as corkscrew due to unstable descending. This paper describes a comprehensive analysis of the flight trajectory characteristics of ballistic missiles. Various missile flight ranges based the comprehensive flight trajectory characteristics are derived by an analytical approach. It is shown analytically that threat due to the flight characteristics is significantly increased with reducing maximum missile ranges. This work is basic research of the establishment of operational concept for the lower tier missile defense system implementation.

RCS of Ballistic Missile Based on Radar Position (레이더 위치에 따른 탄도미사일의 RCS 특성)

  • Park, Tae-Yong;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.209-216
    • /
    • 2015
  • It is difficult to detect, track and intercept ballistic missile because of its high speed and short flight time from launching to target area. In order to increase the success rate of a ballistic missile interceptor, it is important to track the flight trajectory for a long time after the detection in the early launch. Radar Cross Section(RCS) of the target is important when the target to be detected by the radar, and the difference between the RCS value greatly changes depending on the viewing direction during the flight missile trajectory. In this paper, it is assumed that a ballistic missile is launched at east coast of North Korea, observe that missile by a land based radar and sea deployed radar. And it is analyzed and compared that RCS difference of ballistic missile.