• Title/Summary/Keyword: Ballistic Protection

Search Result 37, Processing Time 0.02 seconds

An Effect of surface treatment on a Protection Ballistic Limits in armor material (표면처리가 장갑재료의 방호한계에 미치는 영향)

  • 손세원;김희재;이두성;홍성희;유명재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.126-134
    • /
    • 2003
  • In order to investigate the effect of surface treatment in Aluminium alloy and Titanium alloy which are used to armor material during ballistic impact, a ballistic testing was conducted. Anodizing was used to achieve higher surface hardness of Aluminium alloy and Iron plating in PVD(Physical Vapor Deposition) method was used to achieve higher surface hardness of Titanium alloy. Surface hardness test were conducted using a Micro victor's hardness tester. Ballistic resistance of these materials was measured by protection ballistic limit(V-50), a statical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed from the results of V-50 test and Projectile Through Plates (PTP) test at velocities greater than V-50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V-50 tests were conducted with 0$^{\circ}$obliquity at room temperature with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration. and penetration modes of surface treated alloy laminates are compared to those of surface non-treated alloy laminates. A high speed photography was used to analyze the dynamic perforation phenomena of the test materials.

Ballistic Protection Effectiveness Analysis of Armor Plates with Various Incident angles using Small Caliber Live Fire Test (소화기 실사격 실험 기반의 장갑 재질에 따른 입사각도별 방호성능 효과분석)

  • Lee, Gun-woo;Baek, Jang-Woon;Lee, Byoung-hwak;Kim, Jin-young;Kim, Jong-Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • As a study on ballistic protection performance of a weapon system that is used in combat simulation, this paper aims to propose an improvement effect of the ballistic protection performance varying with incident angle of a bullet. For this, live-fire ballistic tests were performed to determine either complete penetration(CP) and partial penetration(PP) of three types of general armor plates made of uniformly rolled steel plates against a small caliber threat using 5.45 mm bullets with various speed. The major test parameter was the material of the weapon system and incident angle of the bullet with the target. Further, to quantitatively analyze the ballistic protection performance, three existing measurement methods were used for ballistic limit velocity. The test results showed that the ballistic protection performance with the incident angle of 30 degrees was 4% to 14% varying with the material of the armor plates greater than that of 0 degrees, which was approximately 1.1 times the performance improvement on average when compared to the conventional angle of incidence of the 0 degree. Those test results are expected to contribute to developing a more realistic combat simulation addressing the parameter improving the ballistic protection performance of an armor plate.

An Experimental Study on the Characters of Bullet Proof for Al and Ti Alloy (Al합금과 Ti합금의 방탄특성에 관한 실험적 연구)

  • Sohn Se Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 2005
  • In order to investigate the characteristics of penatration and the effect of surface treatment in A15052-H34, Al5082-Hl31 and titanium alloy laminates which were treated by anodizing and PVD(Physical Vapor Desposition) method, ballistic tests were conducted. Thickness of surface membrane in A15052-H34, Al5082-Hl31, were $25{\mu}m$ and that of titanium $0.9{\mu}m$ respectively. Surface hardness test was conducted using micro Vicker's hardness tester. Resistance to penetration is determined by the protection ballistic limit(V50), a statistical velocity with $50\%$ probability for complete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are observed from the results of V50 test and Projectile Through Plate(PTP) test at velocities greater than protection ballistic limit, respectively. Present experimental results derived from this research help to optimize laminate impact behavior by varing the laminate thickness and surface treated materials.

A study on the fracture behavior of Ti/Al laminates under high velocity impact (고속충격을 받는 Ti/Al 적층재의 파괴거동에 관한 연구)

  • Sohn, Se-Won;Lee, Doo-Sung;Hong, Sung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.267-272
    • /
    • 2003
  • In order to investigate the effect of face material on Ti/Al alloy laminates under high velocity impact, a ballistic testing was conducted. Ballistic resistance of these materials was measured by protection ballistic limit($V_{50}$), a statistical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, were respectfully observed, by $V_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with $0^{\circ}$obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with $0^{\circ}$obliquity were also done with projectiles that were able to achieve near or complete penetration during PTP tests. Resistance to penetration, and penetration modes which face material was Titanium alloy, were compared to those which face material was anodized Al alloy after cold-rolling.

  • PDF

The Perforation Behavior of the Anodized AI Light Armor under High Velocity Impact

  • Sohn, Se-Won;Lee, Doo-Sung;Kim, Hee-Jae;Hong, Sung-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.45-50
    • /
    • 2003
  • In order to investigate the effect of surface treatment (Anodizing) and rolling on AI 5083-H131 alloy, under hyper velocity impact, a ballistic testing was conducted. Ballistic resistance of these materials was measured by a protection ballistic limit ($V_{50}$)' a statistical velocity with 50% probability of penetration. Perforation behavior and ballistic tolerance, described by penetration modes, were respectfully observed, by $V_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with 0$^{\circ}$ obliquity at room temperature using 5.56mm ball projectiles. $V_{50}$ tests with 0$^{\circ}$ obliquity were also done with projectiles that were able to achieve near or complete penetration during PTP tests. Resistance to penetration, and penetration modes of Al 5052-H34 alloy were compared to those of Al 5083-H 131 alloy.

An Experimental Study on the Impact Characteristics of Surface Hardened Al 5052-H34 Alloy (표면처리된 알루미늄 5052-H34 합금의 층격특성에 관한 실험적 연구)

  • 손세원;김희재;이두성;홍성희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.178-186
    • /
    • 2003
  • In order to investigate the fracture behaviors (penetration modes) and the resistance to penetration during ballistic impact of Al 5052-H34 alloy laminates, cold-rolled Al 5052-H34 alloy laminates, anodized Al 5052-H34 alloy laminates, and anodized Al 5052-H34 alloy after cold-rolling, a ballistic testing was conducted. In general, superior armor materials are brittle materials which have a high hardness. Ballistic resistance of these materials was measured by a protection ballistic limit (V$_{50}$), a statistical velocity with 50% probability fur incompletete penetration. Fracture begaviors and ballistic tolerance, described by penetration modes, ate observed from the results from the results of V$_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than V$_{50}$, respectively. PTP tests were conducted with 0$_{\circ}$obliquity at room temperature using 5.56mm ball projectile. V$_{50}$ tests with 0$_{\circ}$obliquity at room temperature were concucted with projectiles that could achieve neat or complete penetration during PTP tests. Surface hardness, resistance to penetration, and penetration modes of Al 5052-H34 alloy laminates are compared to those of cold-rolled Al 5052-H34 alloy laminates and anodized Al 5052-H34 alloy laminates and anodized Al 5052-H34 cold-rolled alloy.

Fracture Mechanism of Ceramic/Glass-fiber-reinforced-composites Laminate by High Velocity Impact (세라믹/유리섬유강화복합재 적층판의 고속충돌에 의한 파괴거동)

  • Jung Woo-Kyun;Lee Woo-Il;Kim Hee-Jae;Kwon Jeong-Won;Ahn Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.170-176
    • /
    • 2006
  • Multi-layered laminate made of ceramic/composite have been developed to prevent penetration by high velocity impact. In this study, three-layered plates consisted of 1) cover layer (glass fiber reinforced polymer), 2) $Al_{2}O_{3}$, ceramic plate, and 3) backing plate (glass fiber reinforced polymer) were fabricated with various conditions and tested for their ballistic protection characteristic. The ceramic composite laminates, with thin backing plate, were completely penetrated by armor piercing projectile. The plate with inserted rubber between ceramic and backing plate showed excellent ballistic protection, though completely penetrated by the second shoot.

Experimental and numerical research on ballistic performance of carbon steels and cold worked tool steels with and without Titanium Nitride (TiN) coating

  • Ergul, Erdi;Doruk, Emre;Pakdil, Murat
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • It is extremely important to be aware of the ballistic performances of engineering materials in order to be able to choose the lightest armor providing full ballistic protection in civil and military applications. Therefore, ballistic tests are an important part of armor design process. In this study, ballistic performance of plates made of carbon steel and cold worked tool steel against 7.62 mm AP (armor-piercing) bullets was examined experimentally and numerically in accordance with NIJ standards. Samples in different sizes were prepared to demonstrate the effect of target thickness on ballistic performance. Some of these samples were coated with titanium nitride using physical vapor deposition (PVD) method. After examining all successful and unsuccessful samples at macro and micro levels, factors affecting ballistic performance were determined. Explicit non-linear analyses were made using Ls-Dyna software in order to confirm physical ballistic test results. It was observed that the ballistic features of steel plates used in simulations comply with actual physical test results.

Penetration Mechanisms of Ceramic Composite Armor Made of Alumina/GFRP

  • Jung, Woo-Kyun;Lee, Hee-Sub;Jung, Jae-Won;Ahn, Sung-Hoon;Lee, Woo-Il;Kim, Hee-Jae;Kwon, Jeong-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • Combat vehicles are frequently maneuvered in battlefields when the lives of combatants are being threatened. These vehicles are important elements that influence the consequences of a battle. Their armor must be lightweight and provide excellent protection to ensure successful operations. Ceramic composite armor has recently been developed by many countries to fulfill these requirements. We reviewed previous research to determine an effective armor design, and then fabricated a composite armor structure using $Al_2O_3$ and glass fiber-reinforced polymer. Specimens were manufactured under controlled conditions using different backing plate thicknesses and bonding methods for the ceramic layer and the backing plate. The penetration of an armor-piercing bullet was evaluated from ballistic protection tests. The bonding method between the ceramic layer and the fiber-reinforced polymer influenced the ballistic protection performance. A bonding layer using rubber provided the best protection.