• Title/Summary/Keyword: Ballistic

Search Result 444, Processing Time 0.037 seconds

Internal Ballistic Analysis using Two Kinds of Propellant for Design of Dual-thrust Solid Rocket Motor (이중추력형 고체 추진기관 설계를 위한 이종추진제 적용 내탄도 해석)

  • Kim, Hanjun;Moon, Kyungje
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1176-1179
    • /
    • 2017
  • In this study, internal ballistic analysis theories of dual-thrust solid rocket motor using two kinds of propellant are found, and the theories are applied to develop internal ballistic analysis model. Internal ballistic analysis which is dual-thrust solid rocket motor using two kinds of propellant is carried out an applying of the random figures of two kinds of propellant and an analyze of the test results. Through this analytical model was able to an applying internal ballistic analysis for dual-thrust solid rocket motor using two kinds of propellant.

  • PDF

RCS of Ballistic Missile Based on Radar Position (레이더 위치에 따른 탄도미사일의 RCS 특성)

  • Park, Tae-Yong;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.209-216
    • /
    • 2015
  • It is difficult to detect, track and intercept ballistic missile because of its high speed and short flight time from launching to target area. In order to increase the success rate of a ballistic missile interceptor, it is important to track the flight trajectory for a long time after the detection in the early launch. Radar Cross Section(RCS) of the target is important when the target to be detected by the radar, and the difference between the RCS value greatly changes depending on the viewing direction during the flight missile trajectory. In this paper, it is assumed that a ballistic missile is launched at east coast of North Korea, observe that missile by a land based radar and sea deployed radar. And it is analyzed and compared that RCS difference of ballistic missile.

An Experimental Study on the Characters of Bullet Proof for Al and Ti Alloy (Al합금과 Ti합금의 방탄특성에 관한 실험적 연구)

  • Sohn Se Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 2005
  • In order to investigate the characteristics of penatration and the effect of surface treatment in A15052-H34, Al5082-Hl31 and titanium alloy laminates which were treated by anodizing and PVD(Physical Vapor Desposition) method, ballistic tests were conducted. Thickness of surface membrane in A15052-H34, Al5082-Hl31, were $25{\mu}m$ and that of titanium $0.9{\mu}m$ respectively. Surface hardness test was conducted using micro Vicker's hardness tester. Resistance to penetration is determined by the protection ballistic limit(V50), a statistical velocity with $50\%$ probability for complete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are observed from the results of V50 test and Projectile Through Plate(PTP) test at velocities greater than protection ballistic limit, respectively. Present experimental results derived from this research help to optimize laminate impact behavior by varing the laminate thickness and surface treated materials.

An Experimental Study on the Impact Characteristics of Surface Hardened Al 5052-H34 Alloy (표면처리된 알루미늄 5052-H34 합금의 층격특성에 관한 실험적 연구)

  • 손세원;김희재;이두성;홍성희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.178-186
    • /
    • 2003
  • In order to investigate the fracture behaviors (penetration modes) and the resistance to penetration during ballistic impact of Al 5052-H34 alloy laminates, cold-rolled Al 5052-H34 alloy laminates, anodized Al 5052-H34 alloy laminates, and anodized Al 5052-H34 alloy after cold-rolling, a ballistic testing was conducted. In general, superior armor materials are brittle materials which have a high hardness. Ballistic resistance of these materials was measured by a protection ballistic limit (V$_{50}$), a statistical velocity with 50% probability fur incompletete penetration. Fracture begaviors and ballistic tolerance, described by penetration modes, ate observed from the results from the results of V$_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than V$_{50}$, respectively. PTP tests were conducted with 0$_{\circ}$obliquity at room temperature using 5.56mm ball projectile. V$_{50}$ tests with 0$_{\circ}$obliquity at room temperature were concucted with projectiles that could achieve neat or complete penetration during PTP tests. Surface hardness, resistance to penetration, and penetration modes of Al 5052-H34 alloy laminates are compared to those of cold-rolled Al 5052-H34 alloy laminates and anodized Al 5052-H34 alloy laminates and anodized Al 5052-H34 cold-rolled alloy.

Visualization of Supersonic Projectile Flow in a Ballistic Range (Ballistic Range를 이용한 초음속 Projectile유동의 가시화)

  • Kang, Hyun-Goo;Shin, Choon-Sik;Choi, Jong-Youn;Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.263-266
    • /
    • 2007
  • The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics, creation of new materials since it can create an extremely high-pressure state in very short time. Two-stage light gas gun is being employed most extensively. The present experimental study has been conducted to develop a new type of ballistic range which can easily perform a projectile simulation. The experiment is conducted to find out the dependence of various parameters on the projectile velocity. The pressure in high-pressure tube, pressure of diaphragm rupture and projectile mass and piston mass are varied to obtain various projectile velocities. The flow field is visualized to see flow around projectile.

  • PDF

The Optimal Deployment Problem of Air Defense Artillery for Missile Defense (미사일 방어를 위한 방공포대 최적 배치 문제)

  • Kim, Jae-Kwon;Seol, Hyeonju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.98-104
    • /
    • 2016
  • With the development of modern science and technology, weapon systems such as tanks, submarines, combat planes, radar are also dramatically advanced. Among these weapon systems, the ballistic missile, one of the asymmetric forces, could be considered as a very economical means to attack the core facilities of the other country in order to achieve the strategic goals of the country during the war. Because of the current ballistic missile threat from the North Korea, establishing a missile defense (MD) system becomes one of the major national defense issues. This study focused on the optimization of air defense artillery units' deployment for effective ballistic missile defense. To optimize the deployment of the units, firstly this study examined the possibility of defense, according to the presence of orbital coordinates of ballistic missiles in the limited defense range of air defense artillery units. This constraint on the defense range is originated from the characteristics of anti-ballistic missiles (ABMs) such as PATRIOT. Secondly, this study proposed the optimized mathematical model considering the total covering problem of binary integer programming, as an optimal deployment of air defense artillery units for defending every core defense facility with the least number of such units. Finally, numerical experiments were conducted to show how the suggested approach works. Assuming the current state of the Korean peninsula, the study arbitrarily set ballistic missile bases of the North Korea and core defense facilities of the South Korea. Under these conditions, numerical experiments were executed by utilizing MATLAB R2010a of the MathWorks, Inc.

Ballistic Protection Effectiveness Analysis of Armor Plates with Various Incident angles using Small Caliber Live Fire Test (소화기 실사격 실험 기반의 장갑 재질에 따른 입사각도별 방호성능 효과분석)

  • Lee, Gun-woo;Baek, Jang-Woon;Lee, Byoung-hwak;Kim, Jin-young;Kim, Jong-Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • As a study on ballistic protection performance of a weapon system that is used in combat simulation, this paper aims to propose an improvement effect of the ballistic protection performance varying with incident angle of a bullet. For this, live-fire ballistic tests were performed to determine either complete penetration(CP) and partial penetration(PP) of three types of general armor plates made of uniformly rolled steel plates against a small caliber threat using 5.45 mm bullets with various speed. The major test parameter was the material of the weapon system and incident angle of the bullet with the target. Further, to quantitatively analyze the ballistic protection performance, three existing measurement methods were used for ballistic limit velocity. The test results showed that the ballistic protection performance with the incident angle of 30 degrees was 4% to 14% varying with the material of the armor plates greater than that of 0 degrees, which was approximately 1.1 times the performance improvement on average when compared to the conventional angle of incidence of the 0 degree. Those test results are expected to contribute to developing a more realistic combat simulation addressing the parameter improving the ballistic protection performance of an armor plate.

Modeling and Simulation for Effectiveness Analysis of Anti-Ballistic Warfare in Naval Vessels (함정의 대탄도탄전 효과도 분석을 위한 모델링 및 시뮬레이션)

  • Jang Won Bae;GuenHo Lee ;Hyungho Na ;Il-Chul Moon
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.55-66
    • /
    • 2023
  • In recent years, naval vessels have been developed to fulfill a variety of missions by being equipped with various cutting-edge equipment and ICT technologies. One of the main missions of Korean naval vessels is anti-ballistic missile warfare to defend key units and areas against the growing threat of ballistic missiles. Because the process of detection and interception is too complex and the cost of failure is much high, a lot of preparation is required to effectively conduct anti-ballistic missile warfare. This paper describes the development of a simulation model of anti-ballistic missile warfare with combat systems and equipment to be installed on future naval vessels. In particular, the DEVS formalism providing a modular and hierarchical modeling manner was applied to the simulation model, which can be utilized to efficiently represent various anti-ballistic missile warfare situations. In the simulation results presented, experiments were conducted to analyze the effectiveness of the model for effective detection resource management in anti-ballistic missile warfare. This study is expected to be utilized as a variety of analysis tools necessary to determine the optimal deployment and configuration of combat resources and operational tactics required for effective anti-ballistic missile warfare of ships in the future.

Synthesis of Alumina-Silica ceramic armor materials(I) (알루미나-실리카계 세라믹복합체 방탄재료 연구(I))

  • Kim Cheol-soo;Lee Hyung-Bock
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.40-47
    • /
    • 2005
  • In this study, we tried to invent ceramic armor material with brilliant ballistic properties by the silica of the high compression-expansion ratio and based on alumina that has the most economical and higher ballistic efficiency. After we choose three compositions, proper sintering temperature for each composition was decided. After physical/mechanical measurement, we measured ballistic properties about KE(Kinetic Energy, L/D=10.7, tungsten heavy alloy) and HEAT(High Explosive Anti-Tank, K215) projectiles. As a result, $46\%\;Al_2O_3\;-\;51\%\;SiO_2$ of three compositions had the highest ballistic efficiency md better properties than alumina.

A Study on the fracture behavior of surface hardening treated aluminum alloy under the high velocity impact (고속충격을 받는 표면처리된 알루미늄 합금의 거동에 관한 연구)

  • 손세원;김희재;황도연;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.784-789
    • /
    • 2001
  • In order to investigate the fracture behaviors(penetration modes) and the resistance to penetration during ballistic impact of cold-rolled Al 5052 H34 alloy laminates, anodized Al 5052 H34 alloy laminates, and Al 5052 H34 alloy after cold-rolling, ballistic testing was conducted. In general, superior armor material is brittle materials which have a high hardness. Ballistic resistance of these materials was measured by protection ballistic limit(V50), a statical velocity with 50% probability for incomplete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are observed respectfully, resulting from V50 test and Projectile Through Plate(PTP) test at velocities greater than V50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V50 tests with 0$^{\circ}$obliquity at room temperature were also conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of Al 5052 H34 alloy laminates compared to those of cold-rolled Al 5052 H34 alloy laminates and anodized Al 5052 H34 alloy laminates anodized Al 5052 H34 alloy after cold-rolling.

  • PDF